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Next Generation SiC/GaN 3-Φ Variable Speed Drive Systems

Abstract — Variable-speed drive systems should feature high power density and low installation costs, offer wide input and output voltage/motor speed 
ranges, and ensure low EMI without requiring shielded motor cables. Accordingly, next-generation PWM inverters utilizing fast switching SiC/GaN power 
semiconductors should integrate LC output filters and/or generate continuous output voltages to prevent conducted or radiated EMI, reflections on long 
motor cables, high-frequency motor losses, dv/dt-related motor insulation stresses and bearing currents, such that conventional low-cost motor technology 
can be utilized. 
 The tutorial first analyses different dv/dt- and full-sinewave output filter concepts and highlights the advantages of multi-level voltage DC-
link converter topologies regarding filter volume minimization. Next, the integration of inverter and motor is discussed, and a new phase-modular inverter 
concept (Y-inverter), extending the inverter functionality from buck to buck-boost operation, is introduced and subsequently condensed into a three-phase 
current DC-link inverter that employs a single-bridge-leg voltage-to-current DC/DC conversion input stage and advantageously utilizes novel four-quadrant 
switches in the DC/AC output stage. Next, starting from the basic DC/AC current DC-link topology a three-phase DC-link AC/AC converter concept is derived 
and also translated into a voltage DC-link concept following duality considerations. In a final step, indirect and direct AC/AC matrix converters without 
intermediate energy storage elements are introduced, followed by a discussion of multi-step commutation and space vector modulation schemes. A brief 
comparative evaluation of voltage/current DC-link and matrix AC/AC converter approaches concludes the tutorial. 
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Outline
►  Introduction
 
►  SiC/GaN Application Challenges
►  VSI with dv/dt-Filters
►  VSI with Full-Sinewave Filters
►  Multi-Level / Q2L /Modular VSI
►  Buck+Boost VSI & CSI 
►  Indirect & Direct Matrix Converter 

►  Conclusions  
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Variable Speed Motor Drive (VSD) Systems 
■  Industry Automation / Robotics
■  Material Machining / Processing – Drilling, Milling, etc. 
■  Compressors / Pumps / Fans  
■  Transportation
■  etc., etc.                                    …. Everywhere !

●  60…70 % of All Electric Energy Used in Industry Converted by VSDs   

1

Source:
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Variable Speed Drives — State-of-the-Art  1/2
■   DC-Link Based AC/DC/AC  OR  Matrix-Type  AC/AC Converters
■   Battery OR Fuel-Cell Supply OR Common DC-Bus Concepts

Source:

Source:

●  45% of World’s Electricity Used for Motors in Buildings & Industrial Applications 

2
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●   High Performance @ High Level of Complexity & High Costs (!)  

■   Mains Interface | 3-Φ PWM Inverter | Cable | Motor  →  All Separated
■   PWM Output  →  Conducted & Radiated EMI / Reflections @ Motor Terminals / Bearing Currents
—  Large Installation Space                /   $$$
—  Shielded Motor Cables  / Filters     /  $$$
—  Complicated / Expert Installation  /  $$$

Source:  FLUKE

3

Variable Speed Drives — State-of-the-Art  2/2
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■   Higher Critical E-Field of SiC → Thinner Drift Layer
■   Higher Maximum Junction Temperature Tj,max 

●  Massive Reduction of Relative On-Resistance →  High Blocking Voltage Unipolar (!) Devices 


=



For 1kV:

→

 

SiC Low RDS(on) High-Voltage Devices  

4
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Si vs. SiC
■   Si-IGBTs / Diodes →  Const. On-State Voltage, Turn-Off Tail Current  &  Diode Reverse Recovery Current  
■   SiC-MOSFETs   →  Loss Reduction @ Part Load  BUT  Higher Rth

1200 V  100 A
Die Size:  25.6 mm2

1200 V  100 A
Die Size: 98.8 mm2 + 39.4 mm2

6x Si-IGBT 
6x Si-Diode 

Source:  CreeSource:  Infineon

6x SiC-MOSFET 

●   Space Saving of  >30% on Module Level (!)

Source:  
ATZ elektronik
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Si vs. SiC Conduction Behavior  

●   SiC MOSFETS Facilitate Higher Part Load Efficiency  

■   Si-IGBTs / Diodes →  Const. On-State Voltage Drop / Rel. Low Switching Speed  
■   SiC-MOSFETs         → Resistive On-State Behavior / Factor 10 Higher Sw. Speed

1200 V  100 A
Die Size:  25.6 mm2

1200 V  100 A
Die Size: 98.8 mm2 + 39.4 mm2

Source:  CreeSource:  Infineon

Source: Fuji Electric

Forward Reverse

6
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●   High  di/dt  & dv/dt  →  Challenges in Packaging / EMI / Motor Insulation / Bearing Currents   

1200 V  100 A
Die Size:  25.6 mm2

1200 V  100 A
Die Size: 98.8 mm2 + 39.4 mm2

Source:  CreeSource:  Infineon

Source: Fuji Electric

Si vs. SiC Switching Behavior 

7

■   Si-IGBTs / Diodes →  Const. On-State Voltage Drop / Rel. Low Switching Speed  
■   SiC-MOSFETs         → Resistive On-State Behavior / Factor 10 Higher Sw. Speed
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Challenges 
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■   High  di/dt  Switching Transition
■  Commutation Loop Inductance Ls
■   Allowed Ls Directly Related to Switching Time ts    →  =




●   Advanced Packaging  & Parallel Interleaving for Partitioning of Large Currents (Z-Matching)

Low Commutation Loop Inductance

→

=

Parallel
Connection

8
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●   Motor Surge Voltage |  CM Leakage Current |  Bearing Current

Source:

9

Surge Voltage Reflections & CM Currents
■   High dv/dt  /  Short Rise Times of Inverter DM & CM Output Voltage Pulses  
■   Reflections @ Motor Terminals → High Insulation Stress
■   CM Leakage Current →  Radiated Emissions & Bearing Currents
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Surge Voltage Reflections
■   “Long Motor” Cable lc ≥ ½ tr v
■   Short Rise Time of Inverter Output Voltage   
■   Impedance Mismatch of Cable & Motor  →  Reflect. @ Motor Terminals / High Insul. Stress

Source:  Bakran / ECPE 2019

●   dv/dt-Filtering  OR  Full-Sinewave Filtering / Termination & Matching Networks etc. 
→

SiC

10
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■   Switching Frequency CM Inverter Output Voltage → Motor Shaft Voltage
■   Electrical Discharge Machining (“EDM”) in the Bearing 

● Cond. Grease / Ceram. Bearings / Shaft Grndg Brushes / dv/dt-Filter  OR  Full-Sinewave Filters 

Motor Bearing Currents

Source: 
Switchcraft

11
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Conducted & Radiated EMI Emissions 
■   Higher dv/dt   →  Factor 10
■   Higher Switching Frequencies     →  Factor 10 
■   EMI  Envelope Shifted to Higher Frequencies 

● Higher Influence of Filter Component Parasitics & Couplings  →  Advanced Design

fS= 10 kHz    &    5 kV/us for (Si IGBT)
   fS= 100 kHz  &  50 kV/us for (SiC MOSFET)
 
VDC = 800V
DC/DC @ D= 50%

Si
SiC

12
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dv/dt-Filters
Full-Sinewave Filters

Inverter Output Filters
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dv/dt-Limitation 
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■   Passive –  Damped LC-Filter fC > fS 
■   Hybrid  –  Undamped LC-Filter  &  Multi-Step Sw. Transition
■   Active  –  Gate-Drive Based Shaping of Sw. Transients 

Passive | Hybrid | Active  dv/dt-Limitation 

fsw = 16 kHz
tR = tF = 130 ns
fC = 2.4 MHz 

● Connection to DC-Minus  &  CM Inductor  →  Limit CM Curr. Spikes / EMI / Bearing Currents

!

13
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Design of Passive dv/dt-Filters 

●  ZF,DM  Higher Compared to ZF,CM     →  More Critical 
● Low ZF /  Large Filter Capacitor →  High Losses →  Select ZF,DM Only Slightly Below ZM,a*-b*c

■   Influence of Motor Impedance  ZM  &  (Long) Motor Cable  
■   Sw. Transient  —  Results in DM & CM Voltage Step → Consider DM & CM Properties

C0 = 2nF > CM
R0 = 4Ω

14
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■  Output Voltage Waveforms  —  VDC = 800 V, Pout = 10 kW, 6 kV/us 

■   Active Concept  ■   Passive Concept ■   Hybrid Concept (3fsw ) 
1.  Miller Capacitor
2.  Gate Current Control

1.  LCR-Filter
2.  Clamped LC-Filter

1.  LC-Filter
2.  Multi-Step Switching

1200VSiC / 16 mΩ
CM = 120 pF

L = 3.8 uH
C = 2.7 nF 
R = 19 Ω

L = 4.1 uH
C = 1.3 nF

Comparison of dv/dt-Filtering Techniques 1/2  

15
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■  Losses / Power Density – VDC = 800V, Pout = 10kW, fsw = 16kHz, 1200V SiC-MOSFETs (16mΩ)

●   Comparative Evaluation of 
     Passive & Active Concept  

16

Comparison of dv/dt-Filtering Techniques 2/2  
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Multi-Bridge-Leg dv/dt-Limitation

● Adv. for High Power / High Output Curr. Syst. Employing Parallel Bridge-Legs & Local Comm. Caps  

■   Staggered Sw. Parallel Bridge-Legs → Non-Resonant Multi-Step Transition 

Source: J. Ertl et al.
PCIM Europe 2017

■   2-Step Switching / Resonant Transition (cf. Active dv/dt-Filter)

Source: J. Ertl et al.
PCIM Europe 2018

►

17



/ 132

Aux. Resonant Commutated Pole
■   dv/dt-Limitation & Sw. Loss Red. w/ Snubber Cap. & Aux. Switches →  1 … 1.5 kV/us
■   Opt. Timing of Aux. & Main Switches → Pre-FlexTM Self-Learning AI Algorithm
■   Concept Proposed for BJTs by M. Lockwood & A. Fox @ IPEC 1983 (!)

●   Complicated Implementation  / Critical Timing for fsw > 100 kHz 
●   99.5% Half-Load | 99.35% Full-Load Eff. @ 100 kW, 800 VDC , fsw= 50 kHz (1200 V/12 mΩ SiC MOSFETs)

18
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Inverter Systems w/
Sinusoidal Output Voltages 
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■   Measures  Ensuring EMI Compliance  /  Longevity of Motor Insulation & Bearings 
■   Series Reactor | dv/dt-Filter | DM-Sinus Filter | Full-Sinus Filter | Multi-Level Inverter

●  Small Filter Size → 
   High Sw. Frequ. → SiC   |GaN 

Source:

Source:

Inverter DM & CM Output Filter 

→
 

19
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Inverter DM & CM Output 
Voltage Components
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●  Large Sw. Voltage Steps  →   Rel. High Sw. Losses / Curr. Harmonics / EMI  

■   Open Motor Starpoint →  Single Bridge-Leg / Phase 
■   AC Phase Voltage Ûphase Formation Against DC Midpoint 
■   DC Voltage / Blocking Voltage UDC ≈ 2Ûphase 

2-Level Inverter   

+½U,-½U 

½U ua´

½U 

20
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■   Neutral Point Clamped (NPC) Topology Features Connection to Cap. DC Midpoint
■   Larger Number of Sw. States / Higher Output Voltage Quality
■   Requires Neutral Point Balancing  
■   Blocking Voltage ½UDC ≈ Ûphase 

●  Rel. High Conduction Losses (T-Type Topology as Alternative)

-  Baker (1979)  
+½U,   0,-½U 

½U ua´

½U 

21

3-Level Inverter   
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Equivalent Circuit 1/3

■   Active DM Voltage Component 
■   Inactive CM Zero-Sequence Voltage 
■   Low-Frequ. & Sw.-Frequ. Components 

22
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Equivalent Circuit 2/3
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■   Active Sw.-Frequ. DM Voltage  
■   Inactive Sw.-Frequ. CM Voltage

n

24

Equivalent Circuit 3/3
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3-Φ DM/CM EMI Separation
■   EMI Measurement @ Inverter Output  
■   DM/CM Splitting for Specific Filter Design 

●  Cap. Coupled Interface Circuit as Replacement for LISN (Var. Output Frequ.)  

25
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DM/CM Output Voltage Filtering 

●  DM Inductor / CM Inductor / Phase Inductors 

■   DM & CM Equivalent Circuit

■   Filter Inductor Types 

n

26
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Active CM-Voltage Filtering 
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Active CM Voltage Filters 1/2

●  Residual CM-Volt. Due to CM-Transf. & Sw. Imperfections / Complexity

■   Series Compensation of CM-Voltage  &  DM dv/dt-Filtering 

Source: X. Chen et al., 2007

27
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Source: T.A. Lipo et al., 1999 

■   Aux. Bridge-Leg →  Zero CM-Voltage for Active Inv. Sw. States  &  DM dv/dt-Filtering 

●  Residual CM-Volt. Due to CM-Transf. & Sw. Imperfections / Complexity & Missing Zero State 

28

Active CM Voltage Filters 2/2
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Sinusoidal Output
Triangular Current Mode (TCM)

ZVS Operation
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●  Only 33% Increase of Transistor Conduction Losses Compared to CCM (!)
●  Very Wide Switching Frequency Variation  

■   Purely Sinusoidal Output Voltage (DM & CM Filtering)
■   High Sw. Frequency & TCM → Low Filter Inductor Volume
■   ZVS of Inverter Bridge-Legs 

Full-Sinewave Filter & ZVS Operation

29
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■   Very Wide Switching Frequency Variation of TCM → B-TCM 

●  TCM → B-TCM  —   10% Further Increase of Transistor Conduction Losses   

Frequency-Bounded TCM → B-TCM 

30
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■   Sinusoidal Switching Boundaries → S-TCM
■   Adaption for Low Output Power Considering fsw,max= 140kHz 

●  TCM → S-TCM  ≈   10% Further Increase of Transistor Conduction Losses   

Frequency-Bounded B-TCM → S-TCM 

31
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Residual ZVS Losses 
■   Overlap of uDS & Channel Current ich @ High Isw > Ik 
■   Temporary Turn-on Due to uGS,i > uth 

●  “Kink” Current IK Dependent on Inner & Outer Gate Resistance & ug,n

650V SiC, UDC = 400V

32
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Sinusoidal Output
Continuous Current Mode 

(CCM) Operation
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Full-Sinewave 2-Stage Output Filter 1/3  

●   Evaluation of Optimized Inductors  —  Soft Sat. Toroidal Iron Powder Cores
●   L1=200uH / C1=2.5uF | L2=25uH / C2=2.5uF / Ld=33uH / Rd=5.6Ω

■   Sinewave Output &  IEC/EN 55011 Class-A 
■   Low-Loss Active Damping of 1st Filter Stage  —  Neg. Cap. Current Feedback
■   2kW / 400V DC-Link 3-Φ 650V GaN Inverter (IM=5A), fout,max = 500Hz 
■   Sw. Frequency  fsw= 100kHz 

fC,1=7kHz

fC,2=20kHz

H. Ertl et al.
      (2018)  

33
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● Stationary Motor Phase Curr. /Voltage @ 2.5Nm & fout=250Hz
●  Speed Increase from Standstill to n = 3000rpm in 60ms

■   Exp. Verification  —  650V E-Mode GaN Systems Transistors (50mΩ)
■   Sw. Frequency  fsw= 100kHz, Efficiency  ≈98%
■   200mm x 250mm

iC Measurement

→

→

34

Full-Sinewave 2-Stage Output Filter 2/3  
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●   Modified Filter → Compliance to EMI Standard EN55011 Class-A 

■   Modification of Output Filter Structure 
■   Elimination of Direct Cap. Coupling Between Output and Noisy (!) DC+ (Due to ESR of CDC) 
■   For Opt. iC -Feedback C1 Realized Using ≈Linear Kemet KC-Link 

Symmetric Filter

Modified Filter

modified  

symmetric  

!

35

Full-Sinewave 2-Stage Output Filter 3/3  
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●   Efficiency Improvement of 2-4% in Whole Operating Range 
●   Low Sw. Losses of GaN Inverter & Low Output Filter Losses & Low Motor Iron Losses

■   Si Easypack 1200V/35A vs. GaN 650V/30A (50mΩ)
■   5…20kHz Standard PWM IGBT Motor Inverter (B&R Industrial Automation) 
■   Efficiency Measurement — Inverter DC Input → Load Machine AC Output  

GaN vs. IGBT Inverter Efficiency Comparison 

36
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→  Comparison to Si-IGBT Drive Systems 

■   Transphorm 650 V Normally-On GaN HEMT/30V Si-MOSFET Cascode 6-in-1 Power Module
■   Sinewave LC Output Filter — Corner Frequency  fC= 34 kHz (fsw= 100 kHz)
■   No Freewheeling Diodes

37

Source: 3-Φ 650V GaN Inverter System  1/2 
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● 2% Higher Efficiency of GaN System Despite LC-Filter (Saving in Motor Losses) !  

■   Comparison of GaN Inverter w/ LC-Filter to Si-IGBT System (No Filter, fsw=15 kHz)
■   Measurement of Inverter Stage &  Overall Drive Losses @ 60 Hz

80% →

98% →

3-Φ 650V GaN Inverter System  2/2 

38

Source: 
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Multi-Level / Multi-Cell 
Converters & Modularity
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■   Higher Number of Bridge-Leg Output Voltage Levels / Lower DM & CM Voltage Steps
■   Neutral Point Clamped | Flying Capacitor | T-Type Bridge-Leg Topologies  

2-Level Bridge-Leg                  3-Level Bridge-Leg 

Motor Line-to-Line Voltage 

●   More Complicated Bridge-Leg Structure
●   On-State-Losses of Series-Connected Switches  

3-Level T-Type Inverter  1/3  

39
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3-Level T-Type Inverter  2/3  

●   Full-Sinewave DC-Link Referenced LC-Filter — Elimination of DM & CM Sw. Frequ. Voltage Harmonics 
●   T-Type Topology Ensures Low Conduction Losses — Adv. Application of  M-BDSs (!) 

■   3-Level T-Type Inverter  —  3-Level Phase Voltage / 5-Level Line-to-Line Voltage
■   Lower DM & CM Voltage Steps Compared to 2-Level Converter 

40

Source:

→
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!

3-Level T-Type Inverter  3/3  

●   Full-Sinewave DC-Link Referenced LC-Filter — Elimination of DM & CM Sw. Frequ. Voltage Harmonics 
●   T-Type Topology Ensures Low Conduction Losses — Adv. Application of  M-BDSs (!) 

41

■   3-Level T-Type Inverter  —  3-Level Phase Voltage / 5-Level Line-to-Line Voltage
■   Lower DM & CM Voltage Steps Compared to 2-Level Converter 
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SiC/GaN Figure-of-Merit 

●   Advantage of  LV over HV Power Semiconductors →
●   Advantage of  Multi-Level over 2-Level Converter Topologies 

■   Figure-of-Merit (FOM) Quantifies Conduction & Switching Properties  
■   FOM Identifies Max. Achievable Efficiency @ Given Sw. Frequ.  

ds,on oss

1
FOM

R Q
=

42
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Scaling of Flying Capacitor Multi-Level Concepts
■   Series Interleaving → Reduced Ripple 
■   fsw,eff = Nꞏfsw @ fsw-Determined (!) Switching Losses
■  Lower Overall On-Resistance @ Given Blocking Voltage 
■   Application of LV Technology @ HV

 
=

=


= !

●  Scalability / Manufacturability / Standardization / Redundancy  

!
fsw

fsw

Nꞏfsw

Nꞏfsw

43
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●   FC Voltage Balancing Possible also for DC Output 

3-Level Flying Capacitor (FC) Converter 
■   3-Level Flying Cap. (FC) Converter  → No Connection to DC-Midpoint
■   Involves All Switches in Voltage Generation → Eff. Doubles Device Sw. Frequency 

44
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● Operation @ fout= 100 kHz / fsw,eff = 4.8 MHz, 10 kW, Udc= 800 V 

■  Combination of Series & Parallel Interleaving

— 600 V GaN Power Semiconductors, fsw= 800 kHz
— Volume of ≈180 cm3 (incl. Control etc.)
— H2O Cooling Through Baseplate

25 kW/dm3

4.8MHz GaN Half-Bridge Phase Module  

45
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High-BW High-CMRR Current Measurement

●  Hall Sensor Bandwidth fHall = 1.4   MHz 
● Sense Wdg. Integrator Corner Frequency fint=350    Hz 
●  Low/High-Pass Filter Cross-Over Network ffilter = 15    kHz 

■  Extension of  Commercial Hall Sensor DC    … fHall≈ 500kHz → DC    …   10MHz  
■  Low-Pass & High-Pass Filter Network Combining HF-Sensor & LF Hall-Sensor

46
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■  Realization of a 99%++ Efficient 10kW 3-Φ 400Vrms,ll Inverter System
■  7-Level Hybrid Active NPC Topology  / LV Si-Technology 

99.35%
2.6kW/kg 
56 W/in3

●  200V Si → 200V GaN Technology Results in 99.5% Efficiency

3-Φ Hybrid Multi-Level Inverter  
47
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Quasi-2L/3L
Flying Capacitor Inverter
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■   Operation of N-Level Topology in 2-Level or 3-Level Mode 
■   Intermediate Voltage Levels Only Used During Sw. Transients  
■   Applicability to All Types of Multi-Level Converters     

Q3L  Q2L  

Quasi-2L & Quasi-3L Inverters  

●  Reduced Avg. dv/dt → Lower EMI & Lower Overvoltages @ Motor Terminals
●  Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
●  Low Voltage/Low RDS(on)/Low $ MOSFETs → High Efficiency / No Heatsinks / SMD Packages  

M. Schweizer  (2017)  

48
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Motor-Integrated 
Inverter Systems



/ 132

■   Common DC-Bus —  Single AC/DC Converter / Smaller Cabinet  
■   Motor Integration of DC/AC Stage — Massive Saving in Cabling Effort / Simplified Installation 

Inverter
Stage

DC Power
Network

●   Facilitates DC-Bus Energy Buffer 
●   Direct Energy Exchange @ DC-Bus / Higher Efficiency / Unidirectional Front-End

Source: 

Multi-Axis Drive Systems 

Cabinet

49
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■   Comparative Evaluation of ML-Inverter Concepts
■   2x 2-Level Stacked 650V GaN | 3-Level 650V GaN | 7-Level 200V Si Inverter 
■   Design for 800V DC-Link / 7.5kW / 99% Efficiency / 3s 3x TN Overload  

●   7-Level FC Inverter —  Large PCB Area Requirement & High Complexity  
●   2x 2-Level Inverter    —  No Flying Capacitors & CM Cancellation / Low LCM Volume
●   3-Level FC Inverter —  Best Overall Trade-Off  (Complexity / PCB Area / Volume of Full-Sinewave Filter etc.)

Motor-Integrated Inverter Stage 

90° C
fsw= 35kHz fsw= 75kHz
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Stacked-Multi-Cell (SMC) Inverter
■  Fault-Tolerant VSD
■  Low-Voltage Inverter Modules
■  Very-High Efficiency / Power Density  
■  Automated Manufacturing

■  Rated Power         45 kW  / fout = 2 kHz
■  DC-Link Voltage   1kV 

●  Smart Motor / All-in-One / Plug & Play  | Connected / Intelligent VSD 4.0

51
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Motor-Integrated SMC-Inverter

●   Main Challenge  —  Thermal Coupling  OR  Thermal Decoupling of Motor & Inverter 

■  Rated Power         9 kW @ 3700 rpm
■  DC-Link Voltage   650 …720 V
■  3-Φ Power Cells   5+1
■  Outer Diameter    220 mm

—  Axial Stator Mount
—  200 V GaN e-FETs
—  Low-Capacitance DC-Links  
—  45 mm x 58 mm / Cell

52
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Buck-Boost 
Functionality
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■    General / Wide Applicability 

●   Full-Sinewave Filtered Motor Supply Voltage 
●   LC Output Filter Inductor Advantageously Utilized as Buck-Boost-Inductor 

Motivation

—  Adaption to Load-Dependent Battery | Fuel Cell Supply Voltage
—  Operation in Wide Output Voltage / Wide Motor Speed Range 

Source: magazine.fev.com Source: www.chegg.com

53
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Double-Bridge (DB) Inverter
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Cooling water inlet

Cooling water outlet

Electrical 

connector

RotorImpeller

Journal gas bearing

Thrust 

bearing

Cooling water 

channels

Compressor 

inlet

Compressor 

outlet

Control 

electronics

Power 

electronics

Motor - power 

electronics  

connection

Power electronics - 

electronical connector 

connection

Control electronics –  

power electronics

connection

Output 

filter

Motor 

stator

Battery start 

switch (not 

visible)Power 

semiconductors
Battery start 

diode

Compressor-Integrated DB-GaN-Inverter 
■   E-Mobility 5…15kW Fuel Cell Pressurized Air Supply
■   1kW Rated Power  | UFC = 40…130V | fsw=300kHz  | n = 280‘000rpm / fout= 4.6kHz 
■   Low EMI / Low Cabling Effort 

● Integration → 2x System Power Density | 97% → 98.5% Inverter Efficiency   

54
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Double-Bridge (DB)-Inverter Advantages
■   Unfolder  → Factor 2 Lower DC-Link Voltage 
■   Lower Transistor Voltage Stress  / Lower Switching Losses 
■   Conventional Inverter Bridge-Leg Processes 2x Instantaneous Peak Power

● Access to All Wdg. Terminals — No Problem for Inverter/Motor Integration 

1
2 U

U

55
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●  Integration Typically Results in Higher Comp. Stresses & Cntrl. Complexity / Lower Performance

■   Z-Source Inverter → Shoot-Through States Utilized for Boost Function
■   Higher Component Stress Effectively Limits Boost Operation to ≈120% Uin

“Outside-the-Box” Topologies

■   3-Φ Back-End DC/AC Cuk-Converter 

Source: F.Z. Peng / 2003
J. Rabkowski / 2007 

Source: T.A. Lipo 
et al. /2002  &
K.D.T Ngo / 1984

56
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●  Coupling of the Control of Both Converter Stages → “Synergetic Control”

Boost Converter DC-Link Voltage Adaption

Source: www.rick-gerber.com

■   Inverter-Integr. DC/DC Boost Conv. → Higher DC-Link Voltage / Lower Motor Current
■   Access to Motor Star-Point  &  Specific Motor Design Required
■   No Add. Components 

■   Explicit Front-End DC/DC Boost-Stage 

Source: J. Pforr et al. / 2009 

Source: R.W. Erickson et al. / 1986 

57
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Buck-Boost « Y–Inverter »

●  Switch-Mode Operation of Buck OR Boost Stage →  Quasi Single-Stage Energy Conversion (!)
●  3-Φ Continuous Sinusoidal Output / Low EMI     → No Shielded Cables / No Motor Insul. Stress

■  Generation of  AC-Voltages Using Unipolar Bridge-Legs 

→

“Y-Inverter”
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Sinusoidal Modulation  

■  Y-Inverter 

■  Motor Phase Voltages  

→

●  Const. DC Offset  →  Strictly Positive Output Voltages uaN, ubN, ucN
●  Mutually Exclusive Operation of the Half-Bridges → Low Switching Losses


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Boost-Operation  uan > Ui 

■  Phase-Module 

■  Motor Phase Voltages  

●  Current-Source-Type Operation 
● Clamping of Buck-Bridge High-Side Switch  → Quasi Single-Stage Energy Conversion 
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Buck-Operation uan < Ui 

■  Motor Phase Voltages  

■  Phase-Module 

●  Voltage-Source-Type Operation 
● Clamping of Boost-Bridge High-Side Switch  → Quasi Single-Stage Energy Conversion 
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Discontinuous  Modulation  

■  Y-Inverter 

■  Motor Phase Voltages  

●  Clamping of Each Phase for 1/3 of the Fund. Period → Low Switching Losses (!)
●  Non-Sinusoidal Module Output Voltages  BUT  Sinusoidal Line-to-Line Voltages

→

→
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Control Structure 
■  Motor Speed Control  

●  Cascaded Motor Current / Output Voltage / Inductor Current Control Loops
●  Seamless Transition between Boost- & Buck-Mode  →  “Democratic” Control
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● Max. Output Power  → 6…11 kW
● Output Frequency Range   → 0…500Hz
● Output Voltage Ripple           → 3.2V Peak @ Output of Add. LC-Filter 

●  Wide DC Input Voltage Range  →  400…750VDC
●  Max. Input Current             → ± 15A

■ Demonstrator Specifications 

Y–Inverter VSD

64
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Control 
Board

Main 
Inductors

3-Φ Output

●  DC Voltage Range  400…750VDC
●  Max. Input Current ± 15A
●  Output Voltage        0…230Vrms (Phase)
●  Output Frequency   0…500Hz
●  Sw. Frequency      100kHz
●  3x SiC (75mΩ)/1200V per Switch 
●  IMS Carrying Buck/Boost-Stage Transistors & Comm. Caps & 2nd Filter Ind.  

DC Input

Y–Inverter Demonstrator  

■  Dimensions  →  160 x 110 x 42 mm3 

Output Filter
Inductors

245 W/in3
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●  Line-to-Line Output Voltage Ripple < 3.2V   

100V/div
10A/div

■ Stationary Operation

uDC

iL

uS,a

200V/div
1V/div

uab

∆uab

UDC=   400V 
UAC=   400Vrms (Motor Line-to-Line Voltage) 
fO =   50Hz
fsw =   100kHz / Discontinuous PWM

P  =   6.5kW

Y–Inverter - Measurement Results 
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●  Multi-Level Bridge-Leg Structure  for Increase of Power Density @ Same Efficiency 

Efficiency Measurements
■ Dependence on Input Voltage  &  Output Power Level   

UDC=   400V / 600V
UAC=   230Vrms (Motor Phase-Voltage)
fsw =   100kHz
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EMI-Limits (VSD Product Standard)

●   EMI-Filter Design for Unshielded Cables > 2m and Resid. Applications (Cond. & Rad.) 

■  IEC 61800-3   → Product Standard for Variable-Speed Motor Drives
■  EMI Emission Limits    → Grid Interface (GI) and Power Interfaces (PI)
■  Application   → Residential (C1) or Industrial (C2)
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■  Separate Cond. DM & CM EMI-Filter on DC-Side  & DC-Minus Ref. EMI-Filter on AC-Side

Lf2

Cf2 (on the back)

●   Low Add. EMI Filter Volume    —   74   cm3 for Each Filter (incl. Toroid. Radiated EMI Filter) 
●   Total Power Density Reduces  —  15   kW/dm3 (740   cm3) → 12   kW/dm3 (890   cm3) 

Conducted EMI-Filter  

LCM LDM CDM = C0
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Conducted EMI  -  Experimental Results
■  Measurements of the Cond. EMI Noise on the AC-Side (QP, with 50Hz AC-LISN) 

●   Small 80uH CM-Ind. Added on AC-Side - (3   cm3 of Add. Volume = 0.5% of Converter Vol.)
●   Conducted EMI with Unshielded Motor Cable Fulfilled
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Measurement of Radiated EMI-Noise  1/2

●   Either Open-Area Test Site (OATS) or Special Semi-Anechoic Chamber (SAC) Needed
●   Alternative Pre-Compliance Measurement Method

■   Equipment Under Test (EUT) Placed on Wooden Table with Specified Arrangement
■   CM Absorption Devices (CMAD) Terminate All Cables on AC-Side & DC-Side (Total lcable ≈ 1.5m)
■   Measurement of Radiated Noise with Antenna in 3m Distance   

[IEC 61800-3]
[Schwarzbeck]
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[Electromagnetic Compatibility Engineering, H. Ott]

[Fischer FCC F-33-1]
up to 250MHz
Znom = 6.3Ω

■   CM-Currents NOT Returning IN THE CABLE are the Dominant Source of Radiation
■   Relation Between Radiated Electric Field and CM-Currents (!)

●   Max. Allow. El. Field Strength of 40dBuV/m →  Max. CM-Current of 3.5uA (11dBuA)
●   Current Probe Impedance of 6.3Ω (F-33-1) →  Max. Noise Volt. of 26dBuV @ Test Receiver 

72

Measurement of Radiated EMI-Noise  2/2
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Radiated EMI-Filter Design  

LHF LHF

Cf2 (on the back)CY2,DC (on the back)

●   Additional EMI Filter Volume Already Considered with Conducted EMI Filter
●   Total Power Density Slightly Reduces — 15   kW/dm3 → 12   kW/dm3

■   Single-Stage HF CM-Filter on DC-Side and AC-Side 
■   Plug-On CM-Cores (NiZn-Ferrites) → Low Parasitics & Good HF-Att. up to 1GHz
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Experimental Results - Radiated EMI
■   Y-Inverter Placed in Metallic Enclosure   → Emulates Housing, but Motor Cables Un-Shielded (!)
■   Measurement Setup                               → According IEC 61800-3
■   Alternative Measurement Principle         → Conducted CM-Current Instead of Radiation

●   Already Noticeable Noise Floor
●   HF-Emissions Well Below Equivalent EMI-Limit   → Final Step: Verification Using Antenna
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Return-Path-Inductor Y-Inverter  1/2
■   Buck-Boost Y-Inverter Inductors Relocated from Forward Current to Return Current Path 
■   Up to 90% Reduction of Inductor Area Product | –   80% of Magnetics Volume   

●   FPI-Y —  Applicable for Ohmic OR Inductive Load  /  Sinusoidal Motor Phase Voltages 
●   RPI-Y — Applicability Limited to Inductive Load  /  PWM Motor Phase Voltages  
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■   Buck-Boost Y-Inverter Inductors Relocated from Forward Current to Return Current Path 
■   Up to 90% Reduction of Inductor Area Product | –   80% of Magnetics Volume   

●   FPI-Y —  Applicable for Ohmic or Inductive Load  /  Sinusoidal Motor Phase Voltages 
●   RPI-Y — Applicability Limited to Inductive Load  /  PWM Motor Phase Voltages  
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Return-Path-Inductor Y-Inverter  2/2
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3-Φ Current Source 
Inverter Topology 
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3-Φ Current Source Inverter (CSI) Topology
■  Y-Inverter →   Phase Modules  w/ Buck-Stage | Current Link | Boost-Stage   
■   3-Φ CSI     → Buck-Stage V→I Converter | Current DC-Link DC/AC-Stage

●   Single Inductive Component  
●   Positive DC-Side Voltage for Both Directions of Power Flow → Future Utilization of M-BDSs

→
 

→
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●  Conventional Control of  Inverter Stage  →  Switching of All 3 Phase Legs (3/3) 

■   Monolithic Bidir. Bipolar GaN Switches Featuring 2 Gates → Full Controllability 
■   Buck-Stage for Impressing Const. DC Current / PWM of CSI for Output Voltage Control

78

→

3-Φ Buck-Boost CSI Modulation  1/2  
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■   “Synergetic” Control of Buck-Stage & CSI Stage 
■    6-Pulse-Shaping of DC Current by Buck-Stage  → Allows Clamping of One CSI-Phase 

● Switching of Only 2 of 3 Phase Legs (2/3 Mode) → Significant Reduction of Sw. Losses

79

3-Φ Buck-Boost CSI Modulation  2/2  

→
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3-Φ AC/AC Conversion
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■   Derivation Based on Bidir. Buck-Boost Current Source Inverter (CSI) → Buck-Boost PFC Rectifier 
■   Lower # of Ind. Components Compared to Boost-Buck Rectifier Approach 

●   AC/DC Buck Stage Distributes DC-Link Current to Mains Phases — Sinusoidal Inp. Current 
●   Synergetic Control/Modulation of Rectifier Stage & DC/DC Stage for Min. Sw. Losses

80

Derivation of 3-Φ Current Source AC/AC Converter 1/2
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■   DC-Side Coupling of  Buck-Boost Current DC-Link PFC Rectifier & Inverter — AC/DC/AC
■   Full-Sinewave Filtering @ Input & Output w/ Single Magnetic Component 

●   Bipolar Blocking / Unidir. Switches | Unidir. DC-Link Current Sufficient for Bidir. Power Conversion 
●   Modulation-Based Inversion of DC-Link Voltage Polarity → Inv. of Power Flow Direction 

81

Derivation of 3-Φ Current Source AC/AC Converter 2/2
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!

■   Sinusoidal Motor Voltage Achieved w/ Single Ind. Component
■   Unidir. Valves Sufficient for Bidir. Power Conversion
■   M-BDSs — Synchronous Rectification  

●   Relation to High-Power Thyristor-Based Medium-Voltage Synchr. Machine Variable Speed Drives

Source:  www.mb-drive-services.com

82

3-Φ Current Source AC/AC Converter  
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Synergetic Control
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●   Buck-Mode     →   CSR-Stage Shapes DC-Link Current — 2/3 PWM of CSI-Stage
●   Boost-Mode  →   CSI-Stage  Shapes DC-link Current  — 2/3 PWM of CSR-Stage

■   CSR-Stage OR CSI-Stage Continuously Operates with 2/3-PWM | Seamless Transition

Synergetic Control of 3-Φ AC/AC CSC  
83
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■  Bidir. Curr. DC-Link Converters  —  Unidir. Idc & Bipolar Udc  OR   Bidir. Idc & Unipolar Udc  

•   HV Switch + HV Diode       HV Diode Characteristic / High Cond. Losses
•   M-BDS            Ohmic Cond. Char. BUT 2 External Gate Signals / 2 Gate Drivers
• “Self-Switching”          Ohmic Cond. Char. BUT High Local Complexity (Sensing)

● SRB-MBDS    Quasi-Ohmic Cond. Char. (Cascode w/ LV Si Schottky Diode) & 1 External Gate 

HV

Self Reverse-Blocking M-BDS-Concept 1/2
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■  Bidir. Curr. DC-Link Converters  —  Unidir. Idc & Bipolar Udc  OR   Bidir. Idc & Unipolar Udc  

•   HV Switch + HV Diode       HV Diode Characteristic / High Cond. Losses
•   M-BDS            Ohmic Cond. Char. BUT 2 External Gate Signals / 2 Gate Drivers
• “Self-Switching”          Ohmic Cond. Char. BUT High Local Complexity (Sensing)

● SRB-MBDS    Quasi-Ohmic Cond. Char. (Cascode w/ LV Si Schottky Diode) & 1 External Gate 

600 V 190 mΩ GaN M-BDS 
40 V/10 A Si Schottky Diode

85

HV

Self Reverse-Blocking M-BDS-Concept 2/2
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Buck-
Boost

Boost-
Buck

Source: www.reuts.com
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■   Voltage DC-Link Topology ■   Current DC-Link Topology

●   Standard Bridge-Legs
●   Low-Complexity Commutation
●   Defined Semiconductor Voltage Stress
●   Facilitates DC-Link Energy Storage

●   High Input / Output Filter Volume  

●   Application of M-BDSs
●   Complex 4-Step Commutation OR SRB-MBDSs 
●   Low Filter Volume

●   Challenging Overvoltage Protection
●   Limited Control Dynamics 

!

DUA ITY
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DUA ITY

■   All-600V-GaN AC-AC VSDs / 1.4kW, 200V L-L / Full EMI Filter (Grid & Motor) / 97% Nominal Eff.

87

1.7 kW/dm31.8 kW/dm3

■   Voltage DC-Link Topology ■   Current DC-Link Topology

●   Standard Bridge-Legs
●   Low-Complexity Commutation
●   Defined Semiconductor Voltage Stress
●   Facilitates DC-Link Energy Storage

●   Application of M-BDSs
●   Complex 4-Step Commutation
●   Low Filter Volume



/ 132

3-Φ AC/AC 
Matrix Converter
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3-Φ Voltage Source Converter 
Space Vector Based Analysis  
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■   Switching Considering Interlock Delay Times 
■   23 = 8 Switching States 

●  Continuous OR Discontinuous Modulation →  (nnn)-(pnn)-(ppn)-(ppp)  OR (nnn)-(pnn)-(ppn) 

VSC Space Vector Modulation   1/2

! !
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!

■   Switching Considering Interlock Delay Times 
■   23 = 8 Switching States 

●  Continuous OR Discontinuous Modulation →  (nnn)-(pnn)-(ppn)-(ppp)  OR (nnn)-(pnn)-(ppn) 

!

89

VSC Space Vector Modulation   2/2



/ 132

VSI DC-Link Current
Waveform  
Influence of Output
Voltage Phase  Displacement 
2 on DC-link Current
Waveform
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3-Φ Current Source Converter 
Space Vector Based Analysis  
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CSR Commutation & Equivalent Circuit

Forced Commutation

Natural Commutation

Equivalent Circuit
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■   Overlapping Switching → Natural or Forced Commutation
■   32 = 9 Switching States 

●  Shoot-Trough Free-Wheeling States (aa), (bb), (cc) → ia=ib=iC=0 

CSC Space Vector Modulation   1/2
92
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!

!

■   Overlapping Switching → Natural or Forced Commutation
■   32 = 9 Switching States 

●  Shoot-Trough Free-Wheeling States (aa), (bb), (cc) → ia=ib=iC=0 

93

CSC Space Vector Modulation   2/2
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CSR DC-Link 
Voltage
Waveform  

!

Influence of Input
Current Phase  Displacement 
Φ1 on DC-link Voltage
Waveform
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Indirect & Direct 3-Φ AC/AC Matrix Converter  
■   Constant 3-Φ Instantaneous Power Flow → No Low-Frequ. DC-Link Power Pulsation Buffer Requirement (!) 
■   Indirect AC/DC—DC/AC  OR  Direct AC/AC Power Conversion →  IMC OR DMC
■   DMC → Switch Matrix w/ Bipolar Voltage Blocking & Current Carrying Devices  

●   Input-Side Cap. / Output-Side Motor Ind. → Operation Limited to Buck-Type (Step-Down) Conversion 

Mains

Motor
Mains Motor

dc
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■   Voltage DC-Link AC/AC Converter w/o Energy Storage 
■   Input Diode Bridge w/ Antiparallel Transistors → Regenerative Braking 

●   Limited Output Voltage Range
● Diodes Determine Switching State of Mains Interface → Block-Shaped Mains Current

Fundamental Frequency Front-End (F3E) 

!

++
─

--
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F3E Topology Extension 
■  Sinusoidal Mains Current

Y. Okuma [34] 
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■   Extension of the F.
3E-Topology  → AC Switches / Full Controllability of Mains Interface    

■   Sinusoidal Mains Current

●   Positive DC-Link Voltage Mandatory ! 
●   Coordinated PWM of Input & Output Stage

Indirect Matrix Converter (IMC)   
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■   Hybrid Voltage DC-Link / Current DC-Link Converter 
■   Positive DC-Link Voltage Mandatory ! 

●   DC-Link Voltage  →  Defined by Mains Line-to-Line Voltage Sections 
●   DC-Link Current  →  Defined by Load/Motor Current Sections

IMC Space Vector Modulation     
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IMC Voltage & Current Space Vectors 

●   Positive DC-Link Voltage Mandatory ! 
●   Coordinated PWM of Input & Output Stage
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IMC Space Vector Modulation   

101
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●   Zero Current Commutation of Input Stage 
●   Zero Voltage Commutation of Output Stage

IMC Commutation / Modulation  

→

→

■   Hybrid Voltage DC-Link / Current DC-Link Converter 
■   Positive DC-Link Voltage Mandatory ! 
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DC-link Voltage     u = uac
DC-link Current     i  = iA

(100)(ac)

PWM
Pattern

120°of 
Mains 
Period

DC link 
Voltage & 

Current

IMC Modulation  1/6  

103



/ 132

120°of 
Mains 
Period

DC-Link 
Voltage & 

Current

PWM
Pattern

DC-link Voltage     u = uac
DC-link Current    i  = -iC

(110)(ac)

104

IMC Modulation  2/6  
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120°of 
Mains 
Period

DC-Link 
Voltage & 

Current

PWM
Pattern

!
DC-link Voltage     u = uac
DC-link Current    i = 0

(111)(ac)

■   Input Stage Commutation @ i = 0   

105

IMC Modulation  3/6  
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120°of 
Mains 
Period

DC-Link 
Voltage & 

Current

PWM
Pattern

!
DC-link Voltage     u = uab
DC-link Current    i  = 0

(111)(ab)

■   Input Stage Commutation @ i = 0   

106

IMC Modulation  4/6  
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120°of 
Mains 
Period

DC-Link 
Voltage & 

Current

PWM
Pattern

DC-link Voltage     u = uab
DC-link Current    i = -iC

(110)(ab)

107

IMC Modulation  5/6  
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120°of 
Mains 
Period

DC-Link 
Voltage & 

Current

PWM
Pattern

DC-link Voltage     u = uab
DC-link Current     i = iA

(100)(ab)

108

IMC Modulation  6/6  
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●   High Output Voltage Modulation  (HVM)

●   Low Output Voltage Modulation (LVM)

●   Three-Level Modulation (3LM)

2 1

3ˆ ˆ0
2

U U= 

2 1

1ˆ ˆ0
2

U U= 

2 1

1 3ˆ ˆ
2 2

U U= 

Alternative Modulation Schemes  1/2  

■   LV  vs. HV Modulation 
—  Lower Sw. Losses  (40%) &  Lower CM Voltage (25%)
—  Slightly Lower Load Current Ripple 
—  Input Voltage Ripple Doubles (!)
—  Higher Conduction Losses HVM 

3LM 

LVM 
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■   HV vs. LV Output Modulation 
■   Voltage & Current Time Behavior

!

!

HVM LVM 

110

Alternative Modulation Schemes  2/2  
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120°of 
Mains 
Period

DC-Link 
Voltage & 

Current

PWM
Pattern

IMC Output Voltage Limit  

!

■   IMC  —   Cascaded Buck-Type Structure
■   Input-Stage Output Voltage Reduces with cos Φ1 
■   Analogous to Thyristor AC/DC Converter 
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Sparse
Matrix
Converter

● 15 Transistors
●  18 Diodes

ETH Zurich
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Ultra Sparse 
Matrix Converter

●   9  Transistors
●  18 Diodes

ETH Zurich
T.  Lipo  [13, 20]
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●  Bidirectional Converter

●  Unidirectional Converter ETH Zurich

114

Three-Level 
Matrix Converter 1/2
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Ch. Klumpner  

115

!

Three-Level 
Matrix Converter 1/2
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Hybrid IMC

Ch. Klumpner  
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3-Φ AC/AC Matrix Converter Comparison
■   Indirect Matrix Converter (IMC) ■   Direct Matrix Converter (CMC)
●   GaN M-BDS AC/DC Front-End 
●   ZCS Commutation of AC/DC Stage @ iDC=0  
●   No 4-Step Commutation

●   Higher # of Switches Compared to DMC
●   Lower Cond. Losses @ Low Output Voltage
●   Thermally Critical @ fout → 0  

●   4-Step Commutation 
●   Exclusive Use of GaN M-BDSs 

●   Thermally Critical @ fout ≈ fin  
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Direct Matrix Converter (DMC)

■   Direct AC/AC Conversion → 4-Quadrant (AC) Switches
■   Quasi Three-Level Output Characteristic

●   Multi-Step Commutation (!) 
●   Prevent Mains Short Circuit & Interruption of Load Current 

118
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DMC Multi-Step
Commutation

Example         u-Dependent
                      Commutation

aB → bB @
uab > 0

●   Four-Step Commutation 
●   Two-Step Commutation
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4-Step Commutation of DMC   

■   Example        i-Dependent Commutation
        aA → bA @ i > 0   

Assumption    uab < 0 
●   No Mains Short Circuit 
●   No Load Current Interruption  
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1st Step: Off

■   Example        i-Dependent Commutation
        aA → bA @ i > 0   

Assumption    uab < 0 
●   No Mains Short Circuit 
●   No Load Current Interruption  

121

4-Step Commutation of DMC  1/4   
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1st Step: Off
2nd Step: On

■   Example        i-Dependent Commutation
        aA → bA @ i > 0   

Assumption    uab < 0 
●   No Mains Short Circuit 
●   No Load Current Interruption  

122

4-Step Commutation of DMC  2/4   
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1st Step: Off
2nd Step: On
3rd Step: Off

■   Example        i-Dependent Commutation
        aA → bA @ i > 0   

Assumption    uab < 0 
●   No Mains Short Circuit 
●   No Load Current Interruption  

123

4-Step Commutation of DMC  3/4   



/ 132

1st Step: Off
2nd Step: On
3rd Step: Off
4th Step: On

■   Example        i-Dependent Commutation
        aA → bA @ i > 0   

Assumption    uab < 0 
●   No Mains Short Circuit 
●   No Load Current Interruption  

124

4-Step Commutation of DMC  4/4   
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Industry Application of 3-Φ Matrix Converter
■   Fully Regenerative → e.g. Downhill Conveyor etc. 
■   Higher Power Density Compared to Voltage DC-Link System / No Front-End Boost Inductors 
■   Quasi Three-Level Output Characteristic 
■   No-Switching / Eco Operation for f2 = fMains 
■   Close to Unity Power Factor 

●   Challenging Overvoltage Protection
●   Limited Output Voltage Range (!) 

Source:
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B. Erickson

126

Hybrid CMC
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Full-Bridge CMC / IMC

M. Braun
N. Mohan
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Control Properties of  3-Φ AC-AC Converters

●   DC-DC Equivalent Circuits

! Uncontrolled
Input Filter

128

!

!

!

IMC

I-BBC

V-BBC

DMC
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3-Φ Current DC-Link vs. Matrix AC/AC Converter
■   Current DC-Link Topology

●   Application of M-BDSs | 12 Switches
●   4-Step Commutation
●   Buck-Boost Functionality
●   Low Filter Volume

●   Challenging Overvoltage Protection

!

■   Direct Matrix Converter

●   Application of M-BDSs | 9 Switches
●   4-Step Commutation
●   Complex Space Vector Modulation
●   Limited to Buck-Operation (!)

●   Challenging Overvoltage Protection

129
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Outlook
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■   System Level →  Distributed DC Bus Systems, Integration of Storage, etc.

Summary

■  Enabling Technologies 

─  SiC / GaN
─  Advanced (Multi-Level) Topologies  
─ “Synergetic” Control
─  Monolithic Bidirectional GaN
─  Integration of Switches / Gate Drives / Sensing / Monitoring
─  Adv. Modeling / Simulation / Optimization
─  Machine Learning / AI 

■   Future Need for „SWISS Knife“-Type Inverter Systems

─  Wide Input / Output Voltage Range
─  Continuous / Sinusoidal Output Voltage
─  Electromagnetically „Quiet“ - No Shielded Cables
─ “Plug & Play“ / Non-Expert Installation
─  SMART Motors / Cognitive VSDs
─  On-Line Monitoring / Industry 4.0

Source: 
UK Outdoor

Store
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Monolithic 3D-Integration 
■  M-BDS GaN 3x3 Matrix Converter with Drive-By-Microwave (DBM) Technology 

–    9 Dual-Gate GaN AC-Switches / 4-Step Commutation
–    DBM Gate Drive Transmitter Chip  & Isolating Couplers
–    Ultra Compact → 25 x 18 mm2 (600 V, 10 A – 5 kW Motor)

Source:                               ISSCC 2014

5.0GHz Isolated (5 kVDC) Dividing Coupler

●   Massive Space Saving Compared to Discrete Realization (!)   

Top  Bottom 

Isolated 
HB Driver  Gate A

Gate B

Power Supply 
Transformer
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Future uP Chip-Stack Packaging 
■   Slowing Transistor Node Scaling → Vertical & Heterogeneous Integr. of ICs for Performance Gains 
■   Extreme 3D-Integrated Cube-Sized Compute Nodes 
■   Dual Side & Interlayer Microchannel Cooling   

●  Interposer Supporting Optical Signaling / Volumetric Heat Removal / Power Conversion 
EU FP7 Project
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Smart Converter Concept
■   Utilize High Computing Power & Network Effects in the Cloud  →  “Cognitive” Power Electronics

Source:   Dr. R. Sommer

●    Sensing & Computing on  Component Level | Converter Level | System Level | Application Level        
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200kHz SiC Current DC-Link AC/AC Converter (1) 
■   Normally-On TO-220 1200V/6A SiC J-FETs — Built in 2008 (!) 
■   1200V/10A SiC Schottky Series Diodes
■   X7R Ceramic Filter Capacitors  

● Normally-On J-FETs — Natural Free-Wheeling Current Path for Gate Driver Failure  

A-1/4
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● Low Volume DC-Link Inductor (320uH)

Input   400Vrms Line-to-Line
Output              0…300Hz 
Rated Power     2.5 kVA

2.4 kVA / dm3

230 x 80 x 65 mm3

■   Normally-On TO-220 1200V/6A SiC J-FETs — Built in 2008 (!) 
■   1200V/10A SiC Schottky Series Diodes
■   X7R Ceramic Filter Capacitors  

200kHz SiC Current DC-Link AC/AC Converter (2) 
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2.4 kVA / dm3

230 x 80 x 65 mm3

Input   400Vrms Line-to-Line
Output              0…300Hz 
Rated Power     2.5 kVA

● Low Volume DC-Link Inductor (320uH)

■   7kHz DC-Link Current Control Bandwidth  
■   PCB-Stack Construction —  Power | Gate-Drive | Control Board
■   Coldplate Cooling  

A-3/4

200kHz SiC Current DC-Link AC/AC Converter (3) 
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■   7kHz DC-Link Current Control Bandwidth  
■   PCB-Stack Construction —  Power | Gate-Drive | Control Board
■   Coldplate Cooling  

● Low Volume Powder Core DC-Link Inductor (320uH)

— Conducted EMI   |    EMI Filter

A-4/4

200kHz SiC Current DC-Link AC/AC Converter (4) 
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3-Level NPC Inverter /
Sparse NPC Inverter
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+E,   ed1,ed2,0 

-  Rojas (1993)  

Sparse NPC 3-Level Inverter (1) 
■   3-Level Neutral Point Clamped (3L-NPC) Topology Proposed in 1979 (Baker)
■   Sparse NPC Converter (S-NPCC) → Reduced Total # of Switches   
■   Fast/Slow  &  Low/High Voltage Semiconductors (“Hybrid”)

●  Realization of the S-NPCC Using 650V GaN HEMTs & 1200V Si IGBTs
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■   3-L Matrix Stage → “Voltage Pre-Conditioning” / 2-L Inverter Defines Voltage Direction 
■   Redundant Half Voltage States for DC Midpoint Balancing

Missing Sw. States Compared to Full 3L-NPC → 7 Instead of  9 Phase Voltage Levels
■ ■ ■  Diff. Sw. Schemes → E.g. Avoiding Commutation of 2L-Stage @ Full DC Voltage

B-2/5

Sparse NPC 3-Level Inverter (2) 
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■   Application of Low Sw. & Cond. Loss 650V GaN Technology for 800V DC-Link
■   Redundant Voltage Vectors Allow Control of Neutral Point Voltage
■   Avg. Sw. Frequency of GaN HEMTs & Si IGBT  →  Factor 6

-  Piepenbreier (2018)  

Missing Sw. States Compared to Full 3L-NPC → 7 Instead of  9 Phase Voltage Levels
■ ■ ■  Diff. Sw. Schemes → E.g. Avoiding Commutation of 2L-Stage @ Full DC Voltage

B-3/5

Sparse NPC 3-Level Inverter (3) 
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●   10kHz Sampling Frequ. →   Avg. Sw. Frequencies:  20kHz (GaN) & 3.33kHz (IGBTs)

■   Demonstrator Using Top-Cooled 650V SMD  GaN Half-Bridges  & 1200V Si-IGBT Modules
■   Minimiz. of Commutation Loop by Close Placement of 2L-Inverter Stage & 3L-Source
■   Vertical Commutation Loop of 3L Input Stage 

-  Piepenbreier (2018)  

B-4/5

Sparse NPC 3-Level Inverter (4) 
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● Analysis for Different Modulation Depths  —  M=0.49  &  M=0.92

■   Experimental Results   →  Phase Currents & Phase Voltages -  Piepenbreier (2018)  
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Sparse NPC 3-Level Inverter (5) 
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