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INTRODUCTION: SMART GRID

Energy grid 2.0:
= Decentralized/distributed energy generation
= Diversified nature of loads — both AC and DC
= Bidirectional power and information flow

Microgrids - building blocks of future grid

Key for economic and efficient operation of
microgrids - architectures that avoids multiple
energy conversions

Microgrids are interconnected to other
microgrids or grid at higher voltages through
energy control centers (ECC)

Objectives of ECC:

- Active power-flow control & compensation
- VAR & harmonic compensation
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Fig 1. Generalized representation of a smart grid with microgrids
as building blocks

- Control of DC bus to integrate renewables & storage
- Microgrid control during islanding/grid connection
- Information sharing between microgrid and rest of the n/w
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INTRODUCTION: GRID-CONNECTED MICROGRID NUS
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Public
Services

Utility distribution-grid is a
medium-voltage (MV) network
— few kVs to few 10s of kVs
depending on the country.

Microgrids are usually low-
voltage (LV) networks.

Thus, interfacing microgrids
with utility distribution-grids
require a bidirectional MV-LV
conversion.

EV fast charging stations are
fundamentally grid-connected
microgrids (as they often have
energy storage and renewable
generation within)
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Fig 2. Generalized schematic of a Hybrid AC/DC

Micro-grid (few 100s kW to few MW) interfaced
with the MVAC utility grid (few kV to few 10s kV)
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= Modern and futuristic microgrids are expected to
be increasingly hybrid AC/DC.

Examples of hybrid AC/DC microgrids:

(i) A cluster of buildings having renewables

(ii) Green Data-centers

(iii) Off-grid villages

= MVAC grid-connected DC microgrid systems are
also becoming common-place like:

(i) EV fast-charging stations

(ii) DC green data-centers

= Necessity to have MVAC-LVDC Interface solutions
to facilitate grid integration has increased.

= How should MVAC-LVDC interface be realized?

[1] X. Liu, P.Wang and P. C. Loh, “A Hybrid AC/DC Microgrid and Its Coordination Control,” in IEEE Transactions on Smart Grid, vol. 2, no. 2, pp. 278-286, June 2011.
[2] M. Shahidehpour, Z. Li, W. Gong, S. Bahramirad and M. Lopata, “A Hybrid ac/dc Nanogrid: The Keating Hall Installation at the Illinois Institute of Technology,” in |IEEE Electrification Magazine, vol. 5, no. 2, pp. 36-46, June 2017.
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[3] J. W. Kolar and J. Huber, “Solid-State Transformers: Fundamentals, Industrial Applications, Challenges,” Tutorial at Energy Conversion Congress and Expo, Detroit, Michigan, USA, Oct, 2022.
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[3]J. W. Kolar and J. Huber, “Solid-State Transformers: Fundamentals, Industrial Applications, Challenges,” Tutorial at Energy Conversion Congress and Expo, Detroit, Michigan, USA, Oct, 2022.

Cascaded H-Bridge (CHB)

HISTORY OF ELECTRONIC/SOLID-STATE-TRANSFORMERS

1978 Mennicken / BBC

Medium-Freq. Isol. for Traction 1984 Weiss & Rentmeister
} Isolated

2011 GE
Front-End for Traction

1 MW AC-AC SST w. 10 kV SiC

RmE: e

/

. 1970 / 010
N e ® ! o
1980 \
1996 Steiner & Reinold |

Multi-Cell CHB SST for Traction 2012 ABB

1.2 MW Traction SST
2004 Marquardt & Glinka Field Test

Modular Multilevel Conv. (MMC)

[ p——

S
TR 5o |
e
-

X can
R n :::IJ +:-
° el ¥

NUS | cotege of besien

National University
of Singapore

and Engineering

2021 Delta

13.2 kV / 400 kW EV Fast Charger

2021 Wen et al.
2 MW HFAC-Bus SST

4 Claster v of CHE

&AM A

= -#I .
B

Cell Ny -

1 i

MvDe

Lo

MAAR Hebridge

Cl 5.



BE &

N US College of Design

National University and Englneerlng

of Singapore

FUNDAMENTALS OF TRANSFORMER
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[3]J. W. Kolar and J. Huber, “Solid-State Transformers: Fundamentals, Industrial Applications, Challenges,” Tutorial at Energy Conversion Congress and Expo, Detroit, Michigan, USA, Oct, 2022.
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CONVENTIONAL AND EMERGING MV INTERFACE NUS

Conventional On-Load Tap Changer (OLTC) Transformers [4]

=  Robust and reliable
=  Power flow control: Discrete & Unidirectional
=  DCsub-system for renewables: Needs power electronics
_ S = Low frequency isolation: Bulky volume k1
0.
WE | Heml . . 105 oLTe
AFE =I= ABE [— = cost }/ 75
Rectifier| Inverter|  ~ s - \
* VS I T g
Fig 3. OLTC Transformer based solutions ! weight
24
. . 34
Emergmg Solid State Transformer [5] s
= TR * Reliability and robustness:
| e/ - : . L) .
e j‘% =  Power flow control: Continuous and Bidirectional
— MF/HF . .
1 Transformer =  DC sub-systems for renewables: Easily Possible
—T '__'__::_—_'_J ________ =1 +
C | C LVDC . . :
. = =  Medium frequency isolation: Less bulky
Fig 4. Solid-state transformer-based solutions
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[4] E. I. Amoiralis, M. A. Tsili and A. G. Kladas, “Transformer Design and Optimization: A Literature Survey,” in IEEE Trans. on Power Delivery, vol. 24, no. 4, pp. 1999-2024, Oct. 2009.
[5] M. Shahidehpour, Z. Li, W. Gong, S. Bahramirad and M. Lopata, “A Hybrid ac/dc Nanogrid: The Keating Hall Installation at the Illinois Institute of Technology,” in |IEEE Electrification Magazine, vol. 5, no. 2, pp. 36-46, June 2017.
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Fig 5. Applicability guideline for SST Technology [6]
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Fig 6. Waves of SST innovation [6]

= Having an LVDC interface in the grid-connected SST infrastructure makes it economically justifiable, as AC-DC.
conversion requires power electronics even for LFT + inverter-based solution.
=  The trend of SST technology innovation has shifted to AC-DC type SSTs both for traction and grid applications.

[6] J. E. Huber and J. W. Kolar, "Applicability of Solid-State Transformers in Today’s and Future Distribution Grids," in IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 317-326, Jan. 2019.
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.

: + Possible to Integrate +
Without DESs and DERs|  With
DC bus (more flexibility and| DC bus

- functionalitics)
Single-stage MVAC-
LVDC conversion
(Not studied due to
limited flexibility) + + : 4

Modular Semi-Modular | Single-Cell
Y
¥ ¥ Isolated Front-End
Modular Cascaded [two-stage MVAC-LVDC+LVDC-LVAC)]
Multilevel Modular Isolated Back-End

[three-stage MV AC-LVDC+MVDC-LVDC
+LVDC-LVACQ)]

Fig 7. A broad classification of relevant SST topologies

=  Major focus of the SST technology is regarding the development of MVAC-LVDC conversion strategy, as the
LVDC-LVAC conversion constitutes a well-developed bidirectional inverter.
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GRID-CONNECTED SST (CASCADED-MODULAR) NUS
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= This fully modular SST type is preferred due to the following reasons:
o Use of standardized medium-voltage lower-power (kW range) WBG semiconductor devices and MFTs.

o Effective PFC and harmonic filtering, smaller grid-side filter required, convenient soft-switching.
o Star (Y) - delta (A) flexibility, complete flexibility for scalability and maintenance.

= The broad categorization of cascaded-modular SSTs are given as:
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Fig 8a. Isolated Back-end (IBE) MVAC-LVDC Converter

= Lower efficiency due to two stages
= Lower power density due to bulky DC-link
electrolytic capacitors filtering second
harmonic component [|AC|]
=  Low reliability
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= Higher efficiency due to single stage

= Higher power density mainly due to
elimination of bulky electrolytic
capacitors (second harmonic
components from 3-phases get cancelled
at LVDC bus)

= Higher reliability 12
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EMERGING IMPORTANCE OF ELECTRIC-VEHICLES NUS

Global electric car sales are on track to
grow strongly again this year, reaching
about 17 million

= ~20% of all cars sold worldwide in 2024 is estimated to
be electric (higher market share in China); with the
present energy, climate and industrial policy settings,

Electric car sales by region and global sales share . . .
the projected EV share in 2035 will be ~50%.
» China Europe United States O Restof world O Global sales share (right axis)
5 c 20 40%
E = Electric cars are getting cheaper as the competition
- intensifies, particularly in China.
15 - 30%
] . * |n developing economies outside China, cheaper
=] electric car models are arriving, and the future of
10 — P 20% electric two- and three-wheelers already looks bright.
B e
o . . . .
=K = The global number of installed public charging points
. E 1o - was up 40% in 2023 relative to 2022, and growth for
g Q
= 5 fast chargers outpaced that of slower ones.
4? s
- | :‘ , w BB . . . .
" 2015 2016 2017 2018 2019 2020 2021 2022 2028 2024 B s " Asmore electric vehicles of various types hit the road,
=g]

dedicated, universal and flexible public fast-charging is
the need of the hour.

Note: e=estimated

[7] “Global EV Outlook 2024”, International Energy Agency (IEA), Apr. 2024.
13
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POWER CONVERSION FOR EV CHARGING

Power conversion (unidirectional or bidirectional) is critical for EV charging at different
power levels (‘slow’ and ‘fast’ charging terms are subjective)

National University
of Singapore
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= Power conversion strategies at a functional block level are similar for charging at various power levels (various
possibilities shown below) — the topologies and implementation changes for different power levels
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Fig 10. Conventional DC slow/fast EV charging power conversion systems.
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Fig 11. Configurations for ultra-fast EV charging stations: (a) AC connected; (b) DC connected [8], [9].

4

[8] H. Tu, H. Feng, S. Srdic and S. Lukic, “Extreme Fast Charging of Electric Vehicles: A Technology Overview,” IEEE Trans. Transport. Electrific., vol. 5, no. 4, pp. 861-878, Dec. 2019.
[9] S. Srdic and S. Lukic, “Toward Extreme Fast Charging: Challenges and Opportunities in Directly Connecting to Medium-Voltage Line,” IEEE Electrific. Mag., vol. 7, no. 1, pp. 22-31, Mar. 2019.
15
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ULTRA-FAST EV CHARGING STATION NUS

= Asexplained earlier, SST provides a cost-competitive alternative for isolated MVAC-LVDC conversion (indispensable
need for ultra-fast EV charging stations) with better efficiency and power-density (critical for urban-centers).

= Various MW-scale SST-grid-interface based ultra-fast EV charging concepts has been implemented with some of
them getting commercialized recently! (provided in details in the tutorial referenced as [10] below)

Energy
PV l l '
. ! 2 SHHegs l I+|| Faster Charging Cheaper to Install

SST
~ HETR x ’ delde I ’ de/de Higher Availability Better Site Utilization
‘ | — Reduced
ac/dc g“g dc/dc S ‘/ = System Size
de/de de/dc Vehicle Owners Station Owners

Higher Efficiency
Cheaper Charging Higher Revenue

Fig 12. Ultra-fast EV charging station concept based on SST technology [9].

[9] S. Srdic and S. Lukic, “Toward Extreme Fast Charging: Challenges and Opportunities in Directly Connecting to Medium-Voltage Line,” IEEE Electrific. Mag., vol. 7, no. 1, pp. 22-31, Mar. 2019.
[10] J. W. Kolar and J. Huber, “The Essence of Solid-State Transformers: Fundamentals, Design Challenges, R&D Overview, Comparative Evaluation, Outlook,” IEEE APEC 2023, Florida, USA, Mar. 2023.
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INTRODUCTION: ULTRA-FAST EV CHARGING STATION

MNational University
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Fig 1. Ultra-fast EV charging station concept based on SST technology [2].

[1] H. Tu, H. Feng, S. Srdic and S. Lukic, “Extreme Fast Charging of Electric Vehicles: A Technology Overview,” IEEE Trans. Transport. Electrific., vol. 5, no. 4, pp. 861-878, Dec. 2019.
[2] S. Srdic and S. Lukic, “Toward Extreme Fast Charging: Challenges and Opportunities in Directly Connecting to Medium-Voltage Line,” IEEE Electrific. Mag., vol. 7, no. 1, pp. 22-31, Mar. 2019.
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SCALED-DOWN PROTOTYPING AND PRACTICAL IMPLEMENTATIONE®mNUS

Tab 1. Experimental setup parameters.

Parameter name Value - : ﬁPEV e oubmodule Lo i
Grid voltage, vg 1 kV e o
Grid/line frequency. f 50 Hz
Specifications of FE MVAC-LVDC stage
Nominal power rating, Pr g 13.2 kVA
Number of submodules, N 3
Grid-side voltage reference, fv;m 472.5 V(pk)

LVDC voltage, V. 0.5 kV

Switching frequency, fsw 20 kHz

Leakage inductors, {Ls1, Lso, Ls3} {22, 20, 18} puH

Phase-shift between carriers, ¢cps = 27 /N 27 /3
Grid-side filter inductor, L4 0.5 mH

LVDC filter capacitor, C'g,. 1.41 mF
Half-bridge capacitors, C'1; = Co; 10 puF

Specifications of BE DC-DC converters
Nominal power ratings, { P, P, P} {5.27, 2.63, 0.66} kW
Nominal bat. volt., {V}, pat)s Vin(bat): Vi(bat)} {400, 200, 100} V

Switching frequency. foqp m 1} 20 kHz
Inductors, Ly, 13 I mH
Filter capacitors, Ctp, m 1} I mF

proposed bidirectional EV ultra-fast charging station.
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Tab 2. Benchmarking of the proposed full-scale (22 kV, 1 MVA) bidirectional EV ultra-fast-charging/discharging station
with Commercialized/Certified fast-charging infrastructure products.

Manufacturer

ABB [4] ABB [4] Tesla [4] EVTEC [4] DELTA [17] Proposed
Model Terra 53 Terra HP Supercharger espresso&charge SST-based FC/dC architecture
Status Commercial Commercial Commercial Commercial Certified -
Peak Power 50 kVA 350 kVA 135 kVA 150 kVA 400 kVA 1000 kVA
Supported [PEVs, only only only only IPEVs, mPEVs
PEV types mPEVs mPEVs mPEVs mPEV's mPEVs and hPEVs
Functions only G2V only G2V only G2V only G2V only G2V G2V and V2G
Grid Voltage 480 Vac 400 Vac 380-480 Vac 400 Vac I kVac 22 kVac
PEV side 200-500 V or 150-900 V 50-410 V 170-500 V 200-1000 V 400-900 V (hPEV)
FC/dC DC 50-500 V 200-500 V (mPEV)
voltage(s) 100-300 V (/PEV)
PEV side 120 A 375 A 330 A 300 A 400 A or 500 A (hPEV)
peak DC 500 A 500 A (mPEV)
current(s) 250 A (IPEV)
Peak Efficiency 94% 94.5% 91% 93% 96% >96.4%
Power Density 0.07 kVA/L 0.2 kVA/L 0.14 KVA/L 0.1 kVA/L ~1.2 kVA/L ~3 kVA/L
Time required

to add range
of 200 miles

72 min (mPEV)
20 min (/PEV)

16 min (mPEV)

28 min (mPEV)

24 min (mPEV)

16 min (mPEV)

49.5 min (1 #PEV)+
28 min (2 mPEVs)+
16 min (4 /IPEVs)

© Copyright National University of Singapore. All Rights Reserved.
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YTk
= Maintaining LVDC bus voltage at reference V,_*;
= Achieving complete ZVS of all front-end (FE) side MOSFETSs;
=  Maximizing ZVS range of back-end (BE) side MOSFETs of each
submodule and minimizing the difference in the constituting
submodules’ losses;
= Restricting i, Within grid-code limits

Condition for restricting current harmonics to grid-code limits:

10fsw

.2 _ -
E e = 49% - ig,
k=2

igh(rss) = (21)

Expression for submodules’ optimal grid-side reference voltages:
Vg(rms l €
Viaaney =~ {0,049 - “(wnly)

23)

Each submodule’s optimal pulse-width expression:
2|0y i apoy (T/2 = di) = 2nws Lyi(eso) Lz (F )i

T 7 —
bi(ABC) Vae(fit) o
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Fig 18. Comparative experimental results: (a) Only LVDC
bus Pl control in action, (b) LVDC bus Pl control with
augmented PBC in action, and (c) proposed MOABC in
action, with clear presentations of loss breakdowns and
grid-side power drawn for constituting submodules,
overall efficiency and i;'s THD.
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TAKEAWAY-POINTS

= A futuristic MV grid-connected bidirectional FC/dC station architecture is proposed for facilitating
bidirectional (G2V and V2G) functionality for all three PEV categories (hPEVs, mPEVs and /PEVs). An
explanation for power electronics topology is given, along with the important features of the modulation
schemes and control schemes for the front-end MVAC-LVDC conversion stage and back-end DC-DC
converters for interfacing with the PEVs.

= Experimental results validate the merits of the proposed modulation, control strategies, SoC estimation
technique and adherence to multi-step CC-CV charging schedules; experimental efficiency and grid
current’s THD profiles are presented that show a peak efficiency of 96.4% and current THD restricted
within 2.65%, whereas, the measured power density of the prototype is >3 kVA/L.

= |t can be observed from the benchmarking with other FC products that the proposed MV grid-connected
fast-charging/discharging architecture is not only expected to provide superior efficiency and power
density, but also dual functionality of G2V and V2G as well as low dwell times for all three PEV categories
- such distinct advantages are also not available jointly in any proposed architecture in the literature.

= A proposed multi-objective analytical balance control is capable of not only ensuring complete ZVS for
front-end and back-end MOSFETs for wide load range, but also capable of restricting the grid-side current
harmonics within the standard-prescribed grid-code limits.
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INTRODUCTION: SCOPE OF DESIGN OPTIMIZATION
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Fig 2. Schematic of a MVAC-LVDC Modular SST
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INTRODUCTION: EFFORTS SO FAR IN THE LITERATURE
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= Efforts have been presented to optimise the design
of medium-frequency transformer (MFT) for SST
applications [1], [2] - developed frameworks are
dedicated to Pareto optimize the MFT’s design for
given specifications, and thus doesn’t consider
their effect on the semiconductor’s performance
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= A workflow has been developed that uses FEM Sp;c't,/ o Hachine Learning Ale: A —— SoEs Eisults
simulation data to train regression artificial neural TOZ_S?fgSy Emme g
networks (ANNs) [3] for the magnetic and thermal e
modeling of a dc—dc converter’s inductor during its Mlisesh/a\l;?lllltl;/ne Blackbox / greybox model e | | g
design selection process — requires GPUs and just TNO d‘TreCt PT"YSICF“ - -
optimizes one paSSive Component’s dESign Training Data (measurements, simulations, datasheets, papers, etc.)
e#sn A& [

[1] M. Leibl, G. Ortiz, and J. W. Kolar, “Design and experimental analysis of a medium-frequency transformer for solid-state transformer applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 1, pp. 110-123, Mar. 2017.
[2] M. Mogorovic and D. Dujic, “100 kW, 10 kHz medium frequency transformer design optimization and experimental verification,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1696-1708, Feb. 2019.
[3] T. Guillod, P. Papamanolis and J. W. Kolar, "Artificial Neural Network (ANN) Based Fast and Accurate Inductor Modeling and Design," in IEEE Open Journal of Power Electronics, vol. 1, pp. 284-299, 2020.
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isolated cascaded H-bridge (CHB) rectifier [4], e = T ;ymmﬁ;
: I\ 4500V i - '_-;'.,’-
[5] has been presented, and thus, it does not £ o8 [C300V \ g
include the additional complexities of . £
isolation transformer design i
o C:’m “',.
Inc 96 ! : i ! L
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(a Power Density, p [kW/dm®]

Due to the lack of a comprehensive multi-objective solid-state transformer (SST) design framework, SST designs are
mostly obtained through trial/experience.

[4] J. E. Huber and J. W. Kolar, “Optimum number of cascaded cells for high-power medium-voltage AC-DC converters,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 1, pp. 213-232, Mar. 2017.
[5] J. E. Huber, “Conceptualisation and multi-objective analysis of multi-cell solid-state transformers,” Ph.D. dissertation, HC-DCM SRC Isolation Stage, ETH Zurich, Ziirich, Switzerland, 2016.
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MVAC-LVDC SST DESIGN OPTIMIZATION FRAMEWORK
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Fig 3. Machine-learning aided optimization framework a.
n-p Pareto front generations for Optimal SST Designs.
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OPTIMIZATION ROUTINE FOR A 1-STAGE MVAC-LVDC SST
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Fig 4. Schematic of a CMB-DAB MVAC-LVDC Modular SST
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OPTIMIZATION RESULTS FOR A 1-STAGE MVAC-LVDC SST NUS
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Tab 1. Categories of 22 kV, 1 MVA CMB-DAB SST Structures According to the Front-End Voltage Blocking Capability

Label Front-end devices (Vp,,;) Back-end devices (Vg...) ufre Voo (V PK)  wfge Vi (V) Poyparod (KW) Neypaiod
Category 1 1700 ¥V modules 1200 ¥V modules 0.56 045.2 0.66 200 17.55 19
Category 2 1700 V discretes 1200 V discretes 0.56 0945.2 0.66 800 17.55 19
Category 3 1200 V modules 1200 V modules (0.55 664.8 0.66 800 12.35 27
Category 4 1200 V discretes 1200 V discretes 0.55 664.8 0.66 200 12.35 27
Category 5 900 V discretes 1200 V discretes 0.55 498.6 0.66 200 9.26 36
Category 6 630 V discretes 1200 V discretes (0.55 3595 0.66 800 6.66 30
.+ Locally Optimal 2 kHz  (a) (b) 100 Locally Optimal Lg Design (¢ d

ol Submodule Design (Cat. I) | - 585 @ fo=2 kHz ((%:.( 1 E ,) L= 100 @
N . . s * With Ferrite MFT . e o====Tl * Ferrite based Lg
“§ "—.: S e “1 * With Amorph. MFT . N =~ N * Amorphous based Lg . .'
LES .\ * With Nanocrys. MFT 995 N Locally optimal Lg H
\’i%s ! 98|, Locally Optimal SM “g'! . e | 998 " design @F.,=20 kh:z ";
ot OS5 \ design @0 kHz | \ ot/ | Feasible Le Desians !:
< o \ ~ . ,;’ ~ g ] | = Feasible Lg Designs ;
-~ | 352 S SIS S x|\ Swel@h=20kH=(Cai ) i
= | S8 ' =N S @ g £l [ : IR
2 | 351 ‘ R C & %E Bial! | .
W98 3 il = ~N = . ) =S| ! = .. l
S et \ N or N S S —\S | =94 .
SRS . \ \ = 3% oo IS SETDE ’ T
3 B - \ S N e o5 SE 10 (%
s RT = Locally Optimal 50 kilz |\ |3 ISP S, = [Ea Q3 S
Roesrz 5 ¢ Submodule Design (Cat. 1)+ |3 S N = QI ~Q 5992
0513 5o gn ( | k2985 SS T, & P4 A
W1Eg SR B RS S
=9 &5 W = e , Category 1&2 - Locally S
'E(‘"H \ = b . 83\ Optimal Lg Designs | \ 99
SR \ = . Q
= * Category 1 - Locally Optimal SM designs \ 96 2T ' ~ . . Category 384 - Locally ':. Ct e e et
94 :::-‘g = Category 2 - Locally Optimal SM designs | \ < ‘e . Optimal Lg Designs \ . ey 2
§ = * Category 3 - Locally Optimal SM designs ‘\ X . 3 0 L()C(.'H)' Opﬁn}a,’ . Category 5 - Locally \ 98.8 ' : N et : :
‘_j = . * Category 4 - Locally Optimal SM designs \ 955 . :“_: 975} Desion _— Optimal Lg Designs \ ' . b
A Category 5 - Locally Optimal SM designs \ S, a5 5 55 65 @f,=50 kHz= Category 6 - Locally 1 - : :
\ . . i i . . 5. : s’ ‘ . o2 ‘ | 8.5 9 9.5 10 105 11
o3 \ é CztegoryG‘;Locally Oéphmal Sl\ldeslgns \ Power DUHSIO’, POsi (?{W/L) (C at. 6) . Optimal Lg E)eslgns Power [)fﬂlef_V, pLg (kW/L)
! 25
Power Density, psyr (KW/L)

. . . . ) * Power Dr}?:siiy. Elg (k\z\;ﬁL) o .
Fig 6. Locally n-p Optimal Designs for a. Submodule c. AC filter inductor; Sample execution of the local n-p optimization

algorithms at fsw=20 kHz in Category 1 for b. MB-DAB Submodule d. AC filter inductor

© Copyright National University of Singapore. All Rights Reserved.



NUS

Mational University

T \ of Singapore
-== MLP 140{ === MLP 14 1 --- MLP sl % -== MLP
4 — SVR 120/ = SVR 12 \ — SWR \ — SVR
= —-= Linear Reg | — —.= Linear_Reg . [ Sagl) —.— Linear Reg | =200 —-= Linear_Reg
= T v 100 LT = 10 A s =; \ Sy
- + Original gy e Original ~ § TS « Original ~150 \\\‘ « Original
7= N (— £ . > 8 \~ . ~ .
S |=—————so========a Z 6 S
S T e & 0 9%
z LY 2 40 2
2 2
Bl Y /4
0 2
-3
0 -20 0
0 10 20 30 40 50 0 10 20 30 40 50
0.8
500 a
--- MLP o2 1200 el mp \ -—— MLP 300 -—- MLP
= 0.71 1 K]
4501 = SVR ; 100 | = SVR \ — SWR sl K — SWR
§400 e Lnea ey ~ | —-= Linear Reg fa-==-- PN TR —:= Linear_Reg | \ e MneeriPey
= .« Original %so Original —os - « Original 3200 N »  Original
=350 g .\ = \
C 81507 &, N
= <60 = pat?
=300 i — <100 i S
A, 201 e=" R4 k- oy Sy ~._
200 20 0 \-\.:
0 10 20 30 40 50 0 10 20 30 40 0 10 20 30 40 50
. 200 = N Fig 7. Trained ML
al% --- MLP 75| === MLP \ -—= MLP . -== MLP .
\ — SWR — SWR X — SWR o0\ — SWR models in Category 1,
\ ; 1.50 - : \ s
—-— Linear_Reg —-— Linear_Reg . 51 \ —-= Linear_Reg —-= Linear_Reg . . .
—~ 3 \ - - o~ \ = 25 \ -
= . original | 3125 Original a.] % e i Driginal along with the original
\ ~ b \ e el %y
& \ £1.00 s & . .
S2~-L = Sl S data-points obtained
\Q" T Q0.75 R & &
Bl S 2 R ia iterations of hybrid
B 0.50 - Via Iterations ot nybori
TNy - 075 1 = =i . . .
0 g = 0 = local n-p optimization
0 10 20 30 ) so %%% 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
fow (kHz) fow (kHz) Jaw (kHz) Jow (kHz)

© Copyright National University of Singapore. All Rights Reserved. 10



OPTIMIZATION RESULTS FOR A 1-STAGE MVAC-LVDC SST (CONTD. )r

80

70

Z Pfoss (kW)

]
o

~J =]
(=] [==]

[=)]
o

E
o

Z P ios-sugkw)

w
o

]
(=]

Category 1 80 Category 2 80 Category 3
= predicted = predicted = predicted
« original 70{ + original 70{ + original
60 60
50 50
40+ 40
30 30 <
’ 2047, 204 %
0 20 40 0 20 40 0 20 40
Category 4 80 Category 5 80 Category 6
= predicted = predicted = predicted
« original 701 + original 70{ = original .
60
50+
40+
‘h 301
- 20
0 20 40 0 20 40 0 20 40
Jsw (kHZ) Jsw (kHZ) Jsw (kHZ)

Fig 8. The predicted total loss of optimal SST designs
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OPTIMIZATION RESULTS FOR A CMB-DAB SST (CONTD.)

Tab 2. Error Results (MAE and RMSE) for Trained Models using Machine Learning Algorithms

MNational University
of Singapore

PEﬂss(cond] (W) -P:Ioss{Sw] (W) Hoss{ﬂ'ac) (W) PEOSS(IL-’IF‘T] (W) R!oss(Lg] (W) Volgs (L)
Model MAE  RMSE MAE RMSE | MAE RMSE | MAE RMSE MAE RMSE | MAE RMSE
Linear Regression
Least Squares 0.14 0.17 6.53 8.11 1.17 1.4 5.48 7.33 4.11 5.14 0.07 0.08
Lasso 0.21 0.27 6.44 8.06 1.14 1.37 5.46 7.35 3.99 5.01 0.08 0.11
Support Vector
SVR 0.14 0.17 5.52 8.39 0.71 1.52 5.18 7.19 39 4.92 0.08 0.1
Artifical Neural Network
MLP 0.13 0.18 31.23 37.53 [0.5? 1.58 ] 3.86 5.3 11.05 15.09 0.24 0.31
Volprrpr (L) Volcge (L) Volyg,, (L) C1=C5 (uF) Lymrr) (#H) Turnsy,,
Model MAE  RMSE MAE RMSE | MAE RMSE | MAE RMSE MAE RMSE | MAE RMSE
Linear Regression
Least Squares 0.32 0.39 0.08 0.09 0.43 0.54 13.07 31.42 5.02 7.73 2.45 3.2
Lasso 0.29 0.37 0.07 0.09 0.42 0.54 13.01 31.3 4.99 7.66 2.32 2.99
Support Vector
SVR 0.2 0.42 0.06 0.08 0.32 0.68 13.6 58.11 3.36 8.58 1.9 3.62
Artifical Neural Network
MLP 0.27 045) |lo.11 0.14 | | [0.17 037 | (1445 2691 |[3.92 79 ) {149 2094

© Copyright National University of Singapore. All Rights Reserved.
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Fig 10. a. The n-p design
limits obtained in each
SST category, presented
by n-p pareto fronts
b, c. Loss and Volume
comparison of SST
components for optimal
_. design limits in
Category 1 at 2 kHz,
knee point and 50 kHz.

NUS

MNational University
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— of Singapore

Tab 3. MAPE of Total Loss and Volume Evaluations and
Knee Point Specifications of ML Model Based 22 kV grid-
connected 1 MVA Optimal SST Designs

Label MAPE ] Knee points
> Ploss > . Vol | (%) p((W/L) fsw (kHz)
Category 1 5.02 % 6.09 % 97.3 6.1 16.5
Category 2 5.16 % 5.01 % 97.2 53 16.5
Category 3 2.79 % 3.92 % 97.0 39 16
Category 4 3.04 % 5.68 % 96.9 35 16
Category 5 3.54 % 6.15 % 96.8 33 13.5
Category 6 5.06 % 6.05 % 96.6 2.5 13

= |ncreasing switching frequency need not improve
power density indefinitely — realization!!

= Need to find the sweet spot for design based on
priorities of efficiency and power density
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97 .
Lab. Prototype Tab 4. Categories of 1.5 kV, 15 kVA CMB-DAB Prototype
o A Designs According to the FE Voltage Blocking Capability
§. Cat. VBp-r-i VB sec IufFE Vaci(pk) IufBE Vdc‘ NS M
o A 1700V 200V 0.62 1060V 0.5 450V 2
95 | E A B 1200V 900V 0.59 707V 0.5 450V 3
S 5 Sl C 900V 900V 059 53025V 05 450V 4
= E é § L D 650V 900V 0.55 353.5V 0.5 450V 6
goaf = e Sy
S Q g2 <
S S X g .
= ol B BT s | Tab 5. MAPE of Total Loss and Volume Evaluations and
— Category A Knee Point Specifications of ML Based 1.5 kV, 15 kVA
—— Category B Optimal Prototype Designs
927 Category C | Label MAPE Knee points/Specification
— CategoryD S Puoss > Vol | n(%)  p((WL)  fow (kHz)
o . . * Lab. Prototype Category A | 513 % 640% [ 9508 378 25
1 15 2 25 3 3.5 Category B | 478 % 382 % | 95.99 3.42 20.5
Power Density, p (kW/L) Category C | 329 %  6.13 % | 95.79 273 185
Fig 11. n-p pareto fronts for 1.5 kV, 15 kVA CMB-DAB Category D | 3.07 % 596 % | 95.46 2.4 16
orototype designs Lab. Proto. - - 95.94 34 20.5

© Copyright National University of Singapore. All Rights Reserved. 14



D-DOWN VALIDATION OF PROPOSED FRAMEWORK (CONTD.)___ NUS

£

SCALE

- Sy 2 Nptional university
Submodule 1 x = ;3
1‘1! Front-end >
. switches —e—~
Z <
SE, n /
z Y {oacksn =
I g P
g =l | B
S s | |
I, HH
N ;2/[ Submodule 3
. i
All.\‘i/itllj\’ - Optm’TaI Design Specifications 4
Lg& Cdc Experimental Prototype LA T O ' i
AC g Fig. 13. Fabricated 1.5 kV, 15 kVA CMB-DAB prototype
MFTs
Devices
% w e = = = Fig12. a. Laboratory level Tab 6. Components of Laboratory Scale CMB-DAB Prototype
L tot h ti Component Part number/Specification
Ausiligey " Optimal Desgn specifctions prototype schematic FE MOSFET (§;. S»>) CREE C3M0032120D. 1200 V/63 A/32 mS2
L& Cuk cepenmenairoovee O @ CMIB-DAB BE MOSFET (55 - S5)  2xCREE C3M0065090D, 900 V/36 A/63 mS}
AC Cups: b, c. Loss and volume AC Capacitor (Cy, C») . KEMET C4AF3BW§IOOABMK, 10 uF
MFTs Inductor (L) Micrometals T184-26, Litz wire, 0.5 mH, 15 A
Bl breakdown of the 15 kVA 1:1 MF Transformer E71/33/32-3C94 Ferroxcube, 33 litz wire turns
o o e e e o o prototype at fsw=20.5 kHz. DC Capacitor (QM 2x KEMET C{lAEHBUSlOOAl 1], 1‘0 wF
Vol (L) MOSFET Driver SICI182K SiC MOSFET Gate Driver

© Copyright National University of Singapore. All Rights Reserved. 15



COMPARISON WITH OTHER METHODS AND TAKEAWAY POINTS

Tab 7. Comparison of accuracy and computational burden

Parameters Fully Analytical Fully Numerical
NParetoFront 768 datasets 768 datasets
MNEEA 0 22.6}1][}&
MAPE (3" Fp,...>_ Vol) (12.5,13.1) % ~ 2-3 %
time (with 17, 16 GB PC) ~ 76 hours ~ 2 years
Parameters ML-aided Hybrid | Standalone Hybrid
NParetoFront 768 datasets 768 datasets
MM Ltraining 68 datasets -
NEEA ~ 3400 ~ 3.84x10*
MAPE (3 Pjyss.2 . Vol) (4.7.3.8) % ~ 2-3 %
time (with 17, 16 GB PC) ~ 137 hours ~ 64 days

= Though fully analytical technique requires meagre 76 hours, Mean Absolute % Error > 12%.

= Fully numerical technique is not feasible due to high computational burden.

= Standalone hybrid optimization technique also has considerable computational expense.

RN —
,‘:,;\B, National University
= S

of Singapore

= The ML-aided hybrid optimization technique reduces the number of FEA computations; results in feasible

computational time and low MAPE (<5%).

© Copyright National University of Singapore. All Rights Reserved.
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INTRODUCTION: ULTRA-FAST EV CHARGING STATION INUS

Energy | |
./ ‘
y Storage Illl Faster Charging 1+ +  Cheaper to Install

MV Grid sST - , i
AETR ’ l de/dc I Higher Availability 1+~ ~ “__—+ Better Site Utilization

ac/dc g”g dc/dc S)Z?Sr%cgﬁze
\ I Vehicle Owners Station Owners
Higher Efficiency
Cheaper Charging '« A s S Higher Revenue

Fig 1. Ultra-fast EV charging station concept based on SST technology [1], [2].

[1] H. Tu, H. Feng, S. Srdic and S. Lukic, “Extreme Fast Charging of Electric Vehicles: A Technology Overview,” IEEE Trans. Transport. Electrific., vol. 5, no. 4, pp. 861-878, Dec. 2019.
[2] S. Srdic and S. Lukic, “Toward Extreme Fast Charging: Challenges and Opportunities in Directly Connecting to Medium-Voltage Line,” IEEE Electrific. Mag., vol. 7, no. 1, pp. 22-31, Mar. 2019.

© Copyright National University of Singapore. All Rights Reserved. 3



&

4

i MVAC LVDC conversion stage

&E:) Vacl

Submodule-/

x Llfﬂl?ﬂ.&j
contro.

LAGC(max)

SMI

Vil

}4/ acN
=1 -

Submodule-N

BP,

=@
-

1

_ To &
Ssv-1) l: A~ 7
Sen-1 b cps=2m(1-N")

Phase-Shifted Carriers

Submodule-r

»

Ye i) T
®, I'3+—{Eva

and ¢;

luation v

_ T g
S b,
Se1 cps™

............ Cb, 5
T + VYaci(rms)
@ ACb] mﬂ(rmsﬂ

I bi
“a NN =
S6i d)l Cp572n1L N

Modulator with

A cbk PBC = Vack(rms)

v i(rms) .
PRC + Vaci
A ¢(N 1) - ° Vac(N-1)(rms) !

|

|

p— -
! . Y Vaci(rms) |
|

|

|

|

PBC: Power Balance Controller

Fig 2. Solar-Power ‘Aided EV Fast- -charging Station architecture, W|th subsystems (a) Front end MVAC-LVDC conversion
subsystem, (b) Back-end DC-DC conversion subsystem, (c) Solar PV subsystem.
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ADAPTIVE GRID-SUPPORTIVE CONTROL OF SOLAR-AIDED EV-UFCSEmNUS

Initialize:
d(’)a Ad and C4GC(/11(4.\‘)
v

1 V™ ZInput: Measured V,,,(1), L(?)
v

» Calculate Pp\'(t)s APp\'a A[mppl and AVm])pr

d+D= [ e+ D= [ da+D= |[ da+D)=
d(y+Ad || do-Ad || do)-Ad || do)-Ad
v v v v

d(t+1)=d(?) d(t+1)=d(1)

Save: Ad, d(¢) and '
] Vmppl(" ]): va(l), Outpu'[,
Luppt=-D)=Lp (D) D(t+1)=d(1+1)

=

Fig 3. Flow-chart of the proposed AGCS-MPPPT algorithm.

© Copyright National University of Singapore. All Rights Reserved.
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To restrict the power ramp-rate of solar-energy generation, while
following the specified constraint for avoiding utility-side frequency
ripples, the following iterative control action is applied:

APpy(t
D(t + 1) — D(t) + QAd Whenz—‘;() < CAGC(TH(LI);
d Py (1)

A
D(t+1) = D(t) £ A5, when

A—t > CAGC(”ma:r) .

AP/ AL Eaceumy)
g APPV_,*/AI‘ > géGC(max).____:
ed/ AP,UV_;/AI = c'._AGC(mzw) l l]
= / ) Dynamic change
% APpV_v/At < Cf}_(}(i(maxl____"_ i[l Solar-power
& | APy /AL <’§Acc(mm: — T Maximum limit
l,\,_.l. -------------------- Of APUH’/.(.“;(‘//AI‘
Ds=D+Ad
D =Ds+2A Ad
. D2y AL,
é{. D»g=D2+4Ad
> 75— D;
z D=D+2Ad I4Ad
a2 e D,
_______ D;
Time (s) g

Fig 4. Pictorial representation of the proposed control’s action.



ADAPTIVE GRID SUPPORTIVE CONTROL OF SOLAR-AIDED EV-UFCS

<~ (b) DC-DC

J(b) DCDC @ MVACLVDC ]|
conversion SST subsystem S
subsystem :

: ontro er ox or
| subs: stems (a) & (b)

-
a, g
D
5%
(3
» 38
Ok
2

Fig 5. Experimental testbed of Solar power alded EV-FCS.
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Tab 1. Experimental testbed parameters.
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Parameter name Value
Grid voltage, vg 1 kV
Grid/line frequency, f 50 Hz
Specifications of FE MVAC-LVDC SST subsystem (a)
Nominal power rating, Prg 18 kVA
Number of submodules, N 3
Grid-side voltage reference, v, . 472.5 V(pk)
LVDC voltage. V.. 0.5 kV
Switching frequency, fsw 20 kHz
Leakage inductors, {Lsi, L2, Lea} 20 uH
Phase-shift between carriers, ¢cpg = 27 /N 2w /3
Grid-side filter inductor, L, 0.5 mH
LVDC filter capacitor, Cy. 1.41 mF
Half-bridge capacitors, C'1; = Ca; 10 uF
Specifications of BE DC-DC conversion subsystem (b)
Nominal power ratings. { P, Pm. P} {5.27, 2.63, 0.66} kW
Nominal bat. volt., {Vh(bat)1 Vm(bat}ﬁ Vv!(bat)} {400, 200, 100} V
Switching frequency. fo(p m, 1} 20 kHz
Inductors, Ly m 1y 1 mH
Filter capacitors, Ctp, m 13 1 mF
Specifications of integrated solar PV subsystem (c)
Rated open-circuit PV voltage, Ve 407 V
Rated short-circuit PV current, .. 13A
Voltage at maximum power-point, Vipp 350 V
Current at maximum power-point, I,,,,, 12.15 A
Power at maximum power-point, Prpp 4.25 kW
Boost converter switching frequency. f. 10 kHz
Boost converter’s inductor, Ly, ' 3.15 mH
Boost converter’s capacitors, {Cpq, Cyo} {0.1, 1} mF




ADAPTIVE GRID-SUPPORTIVE CONTROL OF SOLAR-AIDED EV-UFCSEE

= The steady-state or static MPPT efficiency test sequence of the EN 50530 standard for grid-interfacing systems
involves step changes in solar insolation to vary the solar-power, and are defined in two ways: (i) European
efficiency (é;,,,) test, and (ii) California Energy Commission (CEC) efficiency (§...) test.

= The European and CEC steady-state solar-power extraction efficiencies are defined as follows:
EBuro = 0.03 - &5 + 0.06 - §109 + 0.13 - o209
+ 0.1 - &30% + 0.48 - E50% + 0.2 - S100%
Ecrc = 0.04 - &0y + 0.05 - Eapyy + 0.12 - E309

+ 0.21 - &509, + 0.53 - E7591 + 0.05 - 1009,
P, = va(avail)i/maX(PpV(GVGi/)i) and &, = (va,/PpV(ava,,),)-loO%, with P pviavain denoting the maximum solar-power that is

available at a given solar insolation of G, and P, is the solar-power extracted at steady-state.

"= Thesame &, -test and {test sequences can be utilized to study the effectiveness of AGCS-MPPT algorithm
used for solar-power integration in the PEV-FCS, in comparison with other contemporary techniques

= The utility-grid side maximum AP, s50/Dt (0F {nseimax) FECEiVEd is considered to be 500 W/ 0.1 s (i.e. 500 W
per 5 line-frequency cycles) during the test sequence execution time period.

© Copyright National University of Singapore. All Rights Reserved.
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ADAPTIVE GRID-SUPPORTIVE CONTROL OF SOLAR-AIDED EV-UFCSE

Tab 2. Comparative evaluation of proposed algorithm Y3}/ Netienal University
Ep. O ERurdécrc | AGCS-NIPPT  SoAT [45]  P&O [46]

G2V functional mode following &5.,,.,-1@st sequence
E5o 99.01% 08.14% 91.85%

€10% 99.23% 98.73% 92.07% = Various MPPT efficiencies for solar-power integration
0 09.29% 90.12% 03.11% . . .

§§gj 99.48% 90.19%  03.83% during G2V and V2G functional modes of grid-connected

oo et oo o PEV fast-charging station are shown in the adjacent table,

£E u?'; 99.5002% 99.4302% 94.270% i ] - i

G2V functional mode following £~ g -lest sequence n term% of EP’%] and overall fEuro' fCE(_:' for AGCS MPPT, in

E10% 99.21% 9873%  9207% comparison with state-of-art technique (SoAT) and

€200 99.28% 99.12% 93.11% .

€30 99.50% 99.20%  93.83% improved perturb and observe (P&O) strategy.

E50% 99.57% 99.62% 96.55%

Exsor 99.59% 99.66% 97.23%

€100% 99.65% 99.72% 98.22% _ }

£Lo0% 00.5473%  00.5359% 05 168% * The proposed AGCS-MPPT demonstrates excellent solar

V2G functional mode [ollowing &y, o-(est sequence power extraction efficiencies at all studied levels of solar

5% 00.01% 08.13% 02.01% . . - . . .

50’;0 99.229% 08.73%  92.43% irradiation, which is slightly better compared to the SoAT
o 27 1% 8% . . . . . .r-

20% i o100 o3qne strategy’s extraction efficiencies and significantly better

E509, 99.57% 99.61% 95.98% ’ i P i

b 00 e 10t 00 916 08 000t compared to the P&O strategy’s corresponding efficiencies.

EEuro 00.4922% 99.4278% 094.225%

V2G functional mode following £~ g -test sequence ] . . .

Erom, 99.20% 00.69%  92.43% = Using the proposed algorithm, active-power-curtailment
0 00.29% 00.11% 03.08% . e . . .

éﬁgi 90.49% 990.19% 93.76% can be minimized while adhering to (A P, /At) < CaGc(max)-

E50% 99.58% 99.62% 05.98%

Exsor 99.59% 99.65% 97.46%

€100% 99.61% 99.71% 98.09%

EcEC 99.5468% 99.5261%  95.133%

© Copyright National University of Singapore. All Rights Reserved. 10
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ADAPTIVE GRID-SUPPORTIVE CONTROL OF SOLAR-AIDED EV-UFCS

. . . . . ’ 2022/05/20 18:39:12 Normal Edg CH3 F 26V
Tab 3. Extraction efficiencies of the proposed algorithm %m(@q - . e

during EN 50530 dynamic test sequence. | | (V)

Rising ramp slope  Falling ramp slope | MPPT Efficiency
Va
Low-to-Medium solar irradiance sequence: 100 W/m~* to 500 W/m~ T; : L) ‘
+40 W/m?/s -40 W/m?/s 99.009% T T N A O A A N B N 5
+100 W/m?/s -100 W/m?/s 99.237% SN W N N S S ; ; |
+150 W/m?/s -150 W/m?/s 99.264% | _alaw =40 Win/s”
20 2 . i g I
+.200 me. /s . —2% W/im=/s 299.303*}1. , | G(W/m?) N
Medium-to-High solar irradiance sequence: 300 W/m* to 1000 W/m g 2332
+40 W/m?/s 10 W/m?/s 99.011% - DWW T m/\
+100 W/m2/s -100 W/m?2/s 99.256% | YAVAVA
+15D Wflnz;s _15{} an]z;s 99.2? 1{;{‘ I @ 2022/05/20 18:32:15 N 1 Edge CH3 £ 0 02kV
+200 W/m?/s -200 W/m?/s 99.312% T smp— T 5 e — L A

Ve(V)  7g(A)

= The dynamic efficiency for a certain insolation band is
calculated as follows, where the solar-power extraction
efficiency over each section u of rising and falling
insolation ramps is averaged over A total number of

X

sections in that solar insolation band: NG
gDun o )\ Z (/ vau// va(ava'il)u> :A/\/\/\ Pro(W) /\
u=1 4 “ Fig 8. Experimental results for dynamic test sequences in Low-

to-Medium and Medium-to-High solar insolation bands.
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COORDINATED CONTROL TECHNIQUE FOR SOLAR-AIDED EV-UFCS

Tab 4. Comparative advantages of the proposed method
with other control methods for solar-aided EV-UFCS

Control Grid power- Solar Charging Computational
Method ramp constraint ~ MPPT Energy Complexity
Method 1 Not adhered Yes Eppv_cs* O(npv,n?, ;)
Method 2 Might violate No Eppv_cs* O(u,),..ujime
Method 3 Might violate Yes <Eppv_cs®* Ompu.nport)
Proposed Adhered Yes ~Eprv_cs® O(npyvnport)

*Lppv—cs represents the total PEV charging energy demand 1n the
EV-UFCS, while following each PEV’s specified charging schedule
Method 1 (base case): grid-side power-ramp-rate
constraint is ignored and maximum solar-power is
extracted, as well as maximum energy is delivered to
the PEVs as per respective charging schedules.
Method 2: power-ramp-rate-control (PRRC) is
implemented only for solar-plant leading to solar
active-power-curtailment (APC), whereas, PEVs are
supplied as per the charging schedules.

Method 3: current-ramp-rate-constrained (CRRC)
control is implemented for PEV, whereas
unconstrained solar MPPT is implemented

S NUS

» Yrrh/ National University
= e of Singapore

Tab 5. Summary of other PV-EV coordinated control methods with
different control objectives

Method

Main objective(s)

Research gap/demerits

[25]

Grid’s frequency fluctuation
reduction through coordinated
control of PV/EV/ESS

ESS required, EV battery
constraints and energy
delivery not considered

[26]

Residential peak-load reduction
through coordinated-control
of PV/EV/BESS

ESS required, minimal EV
and no grid power-ramp
constraints considered

[27]

Coordinated-control for freq.
regul., opt. sizing of PV/BESS
and min. BESS degradation

ESS required, EV SoC
approx., no grid ramp
constraints considered

[28]

Coordinated EV charging to
reduce solar-PV penetration
induced voltage fluctuations

Rudimentary EV models,
no grid power-ramp or
EV constraints considered

[29]

Adaptive control to achieve
regulated charging under param.
uncertain. and non-ideal grid

Rudimentary EV models,
no grid power-ramp or
EV constraints considered

[30]

Coordinated-control for volt.
regul. and congestion manag.

No grid power-ramp or
EV constraints considered

[31]

Coordinated-control for increas.
resilience during islanding event

Rudimentary EV models, no
EV constraints considered

[32], [33]

Hierarchical optimization for
optimal EV charging scheduling

No grid power-ramp-rate, min.
EV constraints considered

[34]. [44]

Coordinated-control for
off-grid PV/EV systems

Rudimentary EV models, no
EV constraints considered

© Copyright National University of Singapore. All Rights Reserved.
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COORDINATED CONTROL TECHNIQUE FOR SOLAR-AIDED EV-UFCS,

Solar-plant

Vol )

Evaluate AP,(7) and AV,,(1) 14(0)
pv

~ A

D(t+1)
Yes “W No

A)=+1 A(r)=-1

YesNo

K(f)=+1 l K(1)=-1
D(t+D=D(t)+A(t) k() Ad  (5)

Solar MPPT

Fig 10. Algorithm flowchart of the

proposed coordinated-control technique

for solar-aided EV-UFCS, with the

scenario-specific decision making shown.

No P = PEV
Q1> Yes charger

Evaluate {pi(7) using (6) Vjmeas/(?)
/xjr’meab)(i)

Gt ||

Lireri(t D=Ly Evaluate p(r), (1) &
(oo D) Lp+1) via (9)-(11)

~i|PEV
Yes Ev BMS
lx( i’cff)j(f+ ]):lx(max)f(t); § lx(max)j(t)
max(j):_].a Amin(j):O v

I,Y(rcf)j(t+[)=0; ]x(rcj')j(f—’—j)zj ;r(ref)j(t+ 1)7

max(j) s Lmin(jy7/ max(N— V> Amin(j)=

[Evaluate irms in (1 3)@ Yes

[Evaluate p (), 7/(1) & [”x(mf_)f(ﬁj) via (14),(15)]

: _ <
Lxoen (U D71 e (U T) .

No

]x(rej)j(t—i_ 1’)
Scenario 3

)
[Evaluate Alpy(1) & [yyepfi+1) via (19),(20)]

ot D=Lemaei®))  (lrens(t+ D=L repi(t+1))

Scenario 2

y ;‘\.L MNational University
= e of Singapore

Scenario 1: Sudden-change in solar-
plant power with near-constant PEV
fast-charging load

Scenario 2: Sudden-change in PEV fast-
charging load with near-constant solar-
plant power

Scenario 3: Simultaneous sudden-
changes in solar-plant power and PEV
fast-charging load

© Copyright National University of Singapore. All Rights Reserved.
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COORDINATED CONTROL TECHNIQUE FOR SOLAR-AIDED EV-UFCSE
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P,..(W) through MPPT operation ot wLu plant

Fig 11. 1 hour experimental results of relevant grid-side and
LVDC bus-side quantities: v, [1 kV/div], iy, [10 A/div],
Vi [500 V/div], 1. [10 A/div], P4 [5 kW/diV], P, [5 kW/div]
and P, [5 kW/div].
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COORDINATED CONTROL TECHNIQUE FOR SOLAR-AIDED EV-UFCSE=e

MNational University
of Singapore

YOKOGAWA & 2021/12/16 182521 ) Mol e 70V YOKOGANA @ 2t/ /1 15500 (b) Normal Edgo CH3 £50 ¥ yuoeawno 2021/12/16 1827:05 (c) gzrgnkaé/ Edg o CH3 £ 25.0 v
topped . 62.5K8, Aut topped. _
112, fa ) B T )7 2 S VAN TS0 T e 11205 R )7 T OO ) W R =

(L)
—12 nnn—f —12 min—

I hi(meas)

r—/q%‘[m{g,;,;;{,‘;;,‘restric‘ted L VA S e 2.9 meas Testricted fo g == T meas) =
: . i N Y % \ - ’ .
- —y specified by /PEV’s BMS V) 7 Lmavyiz.s) Specified by| |
: | ; : | | '[”‘ 1 e WPEVs BMS .
: : - : Hmesk) L-[m{ 3} (ineas) : e ._{[j_l‘l’fﬂ! ______________________________________________________
' 1% BPEV—— 3 s 2“d hPEV—» ' 1% mPEV- — !PEV—*—znd IPEV- 31 PRV 7
......... Lo ‘ A
SoCor N " SoC A=
Pil](meqs) : 47 rV

[m {2,3} (imeas)

[)I[{. 7](meas)

Fig 13. Hour-long experimental measurements for 3 types of PEV ultra-fast charging-ports: (a) hPEV charging-port with
Vi1(meas) [200 V/diV], 11 meqs) [10 A/diV], 1y o1 [10 A/diV], Ppyieqs) [1.5 kW/div] and SoC,; [25%/div]; (b) 2 mPEV charging-
ports connected to identical mPEVs with V., 51006 [100 V/diV], 1,15 33meas) [10 A/diV], 10023 [10 A/diV], P syimeas) [1
kW/div] and SoC,,,, 3 [25%/div]; and (c) 4 IPEV charging-ports connected to identical IPEVs with V, ;... [50 V/div],
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COORDINATED CONTROL TECHNIQUE FOR SOLAR-AIDED EV-UFCSE

,‘:{}\T) National University
e

Tab 6. Quantification of charging energy delivered by various PEV

ports during hour-long experimentation

of Singapore

Tab 7. Experimental comparison of the proposed coordinated
control with other solar-aided EV-UFCS control strategies

Charging hPEV port’s 2 mPEV ports’ 4 [PEV ports’
pattern charging energy  charging energy  charging energy
Schedule 3.26 kWh 1.35x2 kWh 0.48x4 kWh
in Tab. V (Eh_cs™) (Em—cs™) (Ei_cs™)
Proposed 3.25 kWh 1.36x2 kWh 0.48x4 kWh
Technique | (0.99-F;_cgs*) (1.01-E,,_cs¥) (~ Fi_cg™)

*CS represents the multi-step CC-CV charging schedule as per Tab. V

The experimental results validate that the proposed

technique’s implementation in the EV-UFCS, which

ensure:

= Adherence to the instantaneous grid power-ramp-
rate constraint,

=  Solar MPPT,

= Near maximum PEV charging energy delivery,

= Adherence to instantaneous PEV-BMS constraint.

© Copyright National University of Singapore. All Rights Reserved.

Control Grid-side Solar PEV Charging- PEV-BMS
Method power-ramp-rate ~~ MPPT ports’ Energy constraint
[15], [20] Violates (¢ (1) Yes, E_cs, Em—_cs Have not
substantially >99% and By, _cs considered
[21]-[23] Violates (¢ (t) No E_cs, Emi_cs Have not
occasionally and 'y _cs considered
[24] Violates ( (%) Yes, 09F;,_~g,09FE,,_cs Adhered
occasionally >99% and 0.83F,_cs mostly
[30] Violates (1) Mostly, E_cs, Em_cs Adhered
occasionally <99% and Ej,_cs mostly
[31] Violates (¢ (1) Yes, E,_cs, Epi_cs Have not
occasionally >99% and Ej,_cs considered
Proposed Adheres to Yes, Ei_cs, 1.01E,,_cs Adhered
Cc(t) always >99% and 0.99E;,_cs always

*CS represents the multi-step CC-CV charging schedule as per Tab. V

The proposed control technique facilitates in meeting all the
operational requirements of a MV grid-connected solar-
aided EV-UFCS without requirement of any energy-storage

17



= The SST-based PEV-FCS testbed implementation is discussed, along with the experimental test-sequences
following EN 50530 standard to validate the adaptive grid-supportive AGCS-MPPT control .

= The experimental results for AGCS-MPPT control-based solar-power integration in the PEV-FCS testbed exhibit:

(i) maximum steady-state solar-power extraction efficiencies (§,,., czc) during respective G2V and V2G
functional modes of the PEV-FCS;

(ii) superior performance and MPPT efficiency during dynamic test sequences;

(iii) strong adherence to the utility-grid side power ramp-rate limit condition (A Pp,, /At) < {y6cima-

= A novel coordinated-control technique for a battery-less solar-aided EV-UFCS is presented to ensure maximum
solar extraction and PEV fast-charging energy delivery, while adhering to the instantaneous grid-side and PEV-
BMS’s constraints.

= The presented comprehensive experimental results sufficiently validate all the objectives and constraints (both
at grid-side and PEV-side) of the proposed coordinated-control technique implemented in a solar-aided SST-
based EV-UFCS testbed

© Copyright National University of Singapore. All Rights Reserved. 18
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Introduction and Comprehensive Review o
Having a LVDC interface makes SST technology economically competitive compared to LFT based solutions.

Various MW-scale SST-grid-interface based ultra-fast EV charging concepts (predominantly cascaded modular type)
has been implemented with some of them getting commercialized.

Universal EV Ultra-fast Charging Concept

Futuristic MV grid-connected bidirectional FC/dC station architecture is proposed for facilitating bidirectional (G2V
and V2G) functionality for all three PEV categories, with peak efficiency of 96.4% and power-density >3 kVA/L.
Proposed multi-objective analytical balance control is capable of not only ensuring complete ZVS for all MOSFETs
for wide load range, but also restricts the grid-side current harmonics within the grid-code limits.

ML-aided Design Optimization of Grid-interface

The developed ML-aided optimization framework, based on hybrid (analytical + numerical) models, helps power
electronics design engineers to find optimal SST design in reasonable time while using common PCs.

This technique reduces the number of FEA computations; results in feasible computational time and low MAPE.

Coordinated-control of Renewable Integrated Ultra-fast Charging Stations

An adaptive grid-supportive AGCS-MPPT control algorithm and coordinated-control technique for a battery-less
solar-aided EV-UFCS are presented.

The coordinated-control technique ensure maximum solar extraction and PEV fast-charging energy delivery, while

adhering to the instantaneous grid-side and PEV-BMS’s constraints. 5
FORGING
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MAJOR CHALLENGES FACED BY SST TECHNOLOGY NUS

Efficiency Improvement:

v" Though MVAC-LVAC SSTs have much more functionalities than an LFT, in terms of efficiency it can’t match a LFT
due to extra losses in the semiconductor device (still a bottleneck!).

v Having a LVDC integration requirement leads to necessity of power electronics even for LFT based solutions — in

such cases SSTs are comparable in terms of efficiency even while considering today’s WBG devices.

Reliability Improvement:

v Opposed to LFTs, which are fundamentally a combination of resistances and inductances (majorly), SSTs are
isolated power converters and thus exhibit higher failure rate.

v’ For cascaded SSTs, redundant submodules are used for enhancing reliability, but having increased number of

redundant submodules reduces power density (unavoidable trade-off!).

= Financial burden:
v" A MVAC-LVAC SST is 3-5 times more expensive compared to a conventional LFT.
v" A SST with MVAC-LVDC stage however has similar cost compared to (LFT + back-to-back converter).

L

_ me v BB - T
GE = 9 2 i ] BE |— <
AFE | T|| ABE — L ME/HF e
Rectifier T T 5 - | Transformer E}/E} -
. . ) i . . Comrol  Communication | LVDC "
Fig. 1. Low-frequency transformer Fig. 2. LFT reinforced with AFE rectifier + ABE Fig. 3. Solid-state transformer
(LFT) inverter (SST)

[1] J. E. Huber and J. W. Kolar, "Applicability of Solid-State Transformers in Today’s and Future Distribution Grids," in IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 317-326, Jan. 2019. 3
BOR Gilibksand . \W. kdiaf,'VolumeéAfeight/cost comparison of a IMVA 10 kV/400 V solid-state against a conventional low-frequency distribution transformer," 2014 IEEE Energy Conversion Congress and Exposition (ECCE), 2014,
pp. 4545-4552.
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Incompatibility Issues:

v’ Itis standard for LFTs to supply 25 times of the rated current for at least 2 seconds during faults (in line with the
power system protection scheme), but SSTs can’t withstand this current as the thermal time constant of
semiconductor devices is only 10s of milliseconds.

v’ SSTs have the ability to limit the short circuit current, but it requires advanced protection concepts such as

communication between SSTs, circuit breakers, etc., which will incur more cost; protection of SSTs against over-

voltages due to lightning strikes or faulty switching are still quite challenging.

Competition from Alternative Solutions:

v Automatic on-load tap-changing transformers (also known as voltage regulation distribution transformer), in
combination with active series voltage regulators and static VAr compensators can also fulfill most of the
functionalities of SSTs with only partial power electronics-based power processing (but at lower power density).

v" Various Hybrid transformers and other series/parallel hybridization of LFT and power electronics can fulfill most

of the SST functionalities with partial power electronics-based power processing.

. LFT LFT — o P
Tt ek gt T O 250
Ao/ TL = 3. = SST ™

e

AC el T Ac/T 1 |pC HAC 71— AC Chopper___
DC L g: pel T 1/ ac| Y (a) e — () PP
Fig. 4. Various configurations of hybrid Fig. 5. (a) LFT-SST parallel combination; (b) Series combination of LFT+AC-chopper

transformers

[1] J. E. Huber and J. W. Kolar, "Applicability of Solid-State Transformers in Today’s and Future Distribution Grids," in IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 317-326, Jan. 2019. 4
BOR Gilibksand . \W. kdiaf,'VolumeéAfeight/cost comparison of a IMVA 10 kV/400 V solid-state against a conventional low-frequency distribution transformer," 2014 IEEE Energy Conversion Congress and Exposition (ECCE), 2014,
pp. 4545-4552.
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AC-DC applications v

Applications with need to interface the MVAC grid with a LVDC : i \\
grid, such as integration of DES and DERs, integration of DC \ &
microgrids, supply for EV fast charging stations, supplying DC

data-centres from MV grid. 1o b A,
For such applications, LFT technology alone is not sufficient and .
has to be reinforced with AC-DC bidirectional converters. cost : Fig. 6. Comparisons with LFT:

(a) 100% AC-AC SST; (b) 50%
AC-DC and 50% AC-AC SST
operation; (c) 100% AC-DC
SST

For solely AC-DC applications, SST is a superior choice comparec
to LFT in terms of efficiency, power density and cost.

Weight/area constrained applications

SST technology has high power density, which beats the LFT technology even for MVAC-LVAC application
Favourable solution for weight/area constrained domains like traction applications, railways auxiliary MVAC-
LVDC power lines (for air-conditioning, etc.), flying wind turbines and so on.

Grid-connected power systems application where space is a major constraint like subsea applications such as oil
drilling, underground transmission/distribution networks, urban centres, etc.

DC-DC applications
Emerging MVDC transmission/distribution network, e.g offshore substations for offshore wind-power farms
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EMERGING APPLICATION OF MEDIUM- VOLTAGE INTERFACE
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Fig. 6. Schematic of a proposed MV grid-connected bidirectional fast-charging station
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Ultra-fast-charging stations of
the future are expected to
mimic the conventional
refueling stations today.

Should be capable of charging
all three types of vehicles
(heavy, medium, light).

The infrastructure should be
bidirectional in nature to
facilitate V2G and G2V.

MV grid-connected SST based
ultra-fast-charging station
capable of providing better
efficiency (>96%) and power
density (>3 kW/L).
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EMERGING APPLICATIONS OF MEDIUM-VOLTAGE 85 N
CONVERSION

|MVAC-LVDC Conversion | | Facility loads | = There is a push to make data-centers more
' C : C : % g ;El Cooling sysiems ] sustainable by reducing their power usage
- LED Monitors | . .
Veg i A K R s sxhave o] effectiveness (PUE) index.
_ @-L- > |_'__;| |L__.I_| L___L[ I Indl{str.i ?11 PCs |
2 g |t BP, ng BP, 'l-lé Iii 48 V facility loads | = MVAC-LVDC SST is a potential competitor for
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Fig. 7. Schematic of a proposed MVAC-LVDC conversion stage for MV
grid-interfacing of DC based data-centre distribution grid.
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